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ABSTRACT

In this paper, we consider an information-theoretic formulation of the content identification under search com-
plexity constrain. The proposed framework is based on soft fingerprinting, i.e., joint consideration of sign and
magnitude of fingerprint coefficients. The fingerprint magnitude is analyzed in the scope of communications with
side information that results in channel decomposition, where all bits of fingerprints are classified to be com-
municated via several channels with distinctive characteristics. We demonstrate that under certain conditions
the channels with low identification capacity can be neglected without considerable rate loss. This is a basis for
the analysis of fast identification techniques trading-off theoretical performance in terms of achievable rate and
search complexity.
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1. INTRODUCTION

The amount of information stored in digital form grows exponentially. The Internet already contains billions
of multimedia files available on-line in the form of digital images, video or audio. For example, the latest
estimations evaluate Picasa or Flicker to have nowadays about 3 billion images and a similar number of video
clips on YouTube and even larger number of images in the Google Image Search database.1,2 At the same time,
most of the Internet multimedia files are unlabeled and provided by different users. Therefore, there is a great
interest in the development of systems allowing flexible management of these collections such as content-based
retrieval, content filtering and automatic tagging.3,4 Besides, some multimedia security applications require
multimedia copyright protection, content origin identification, content tracking and broadcast monitoring.5,6

Similar problems also exist in the physical world where either humans or physical objects should be reliably
identified based on their unique features or characteristics. In the case of humans these unique features correspond
to biometrics (fingerprint, iris, etc.) that should be handled with special care to satisfy privacy-preserving
requirements.7,8 In the case of physical objects, the unique features are represented by specific unclonable
characteristics, which can be acquired but can not be duplicated or reproduced with sufficient precision.9

Finally, numerous genetics and proteomics applications require either accurate identification of DNA se-
quences, proteins or peptides or detection of certain post-translation modifications considered to be as deviation
from the baseline templates.10,11 Curse of dimensionality in large scale databases, noise modifications and dis-
tortions raise numerous concerns in the search community regarding fast and accurate identification of these
sequences.

Despite the different domains and origins, all these problems have in common the necessity to find the best
matches to a given query according to the certain defined measure of similarity. The result of the search is given
in the form of either the best unique match or a list of matches. Additionally, the list size may vary (for example
as search results produced by Google) or be fixed to a certain value considered to be feasible for further manual
processing. Therefore, identification with unique match is very close in formulation to pattern recognition, while
list-based identification displays some remarkable similarity with nearest neighbor (NN) search. Additionally,
unique identification can be considered as the NN problem with a result presented by the index on the top of
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the list. In any case, the NN problem in a multidimensional space is known to be NP-hard due to the curse of
dimensionality.12,13

Several multi-dimensional indexing methods, such as the popular KD-tree14 or branch-and-bound techniques,
etc., have been proposed to reduce search complexity. However, for large dimensional problems it turns out15 that
such approaches are not more efficient than the brute-force exhaustive distance calculation, whose complexity is
O(ML), where M is the size of the database and L stands for the length of a feature vector used for content
representation.

Therefore, current state-of-the-art techniques overcame this issue by performing approximate matching.16–18

The key idea shared by these algorithms is to find the best matches with only high probability close to 1 − ǫ,
where ǫ is a small positive value, instead of the exact match with probability 1. In this respect the most common
distance for matching is considered to be the Euclidian one.

One of the first techniques of approximate matching in the Euclidian distance metric is Euclidian Locality
Sensitive Hashing (LSH),16,19 which has been successfully used for image search based on local descriptors,20

3D object indexing21 and manually prefiltered proteomics data.22 However, for real data, LSH is outperformed
by heuristic methods.18

Moreover, identification systems in general are facing not only matching an accuracy-complexity trade-off.
As soon as these systems are applied to practical problems, the memory storage of the indexing structure and
its update due to new entries start to play a significant role. For example, in the case of Euclidian LSH, the
memory usage may even be higher than that of original data vectors. The same critical argument also applies
to audio search systems based on robust fingerprinting23 and image indexing24 that both essentially represent a
concatenated one-dimensional form of the LSH strategy. Similar approaches are based on small binary codes,25

semantic hashing26 and spectral hashing.27 Only relatively recently, researchers have tried to design memory
limited identification systems. This is a key criterion problem involving large scale applications,28,29 where
millions to billions of images have to be indexed.

It is also worth noting that due to the large scale and required huge computational power, the identification
is either outsourced or considered to be securely executed on third party servers. The examples of existing
outsourced systems are numerous and include outsourcing of email services, P2P data sharing, Google-like
search architectures and social networks. At the same time, all the above multimedia, biometrics, genomics or
proteomics applications more broadly and intensively enter into the field of human privacy that is a very sensitive
issue. Any naive use and implementation of large scale identification systems might therefore lead to a severe
privacy problem.

The privacy model in the identification framework can be considered in a simplified setting,30 when the data
owner stores some possibly privacy-sensitive information on an untrusted server, which models the outsourced
service provider. At the same time, these data should be provided to several authorized users, who are allowed
to access and search it. The data owner and data user might possess a common secret. Since the server might
be honest-but-curious or even malicious, the data provided by the data owner to the server should be properly
handled to avoid any privacy disclosure, but at the same time allow accurate search.

Therefore, the data user query for identification search should reveal as little information as possible to the
server and unauthorized parties about the stored data itself and query of interest to the data user. Moreover,
the data user might possess only some inexact distorted or noisy version of data owner’s data. Thus, exact
matching strategies are not applicable in this case. The state-of-the-art techniques are therefore mostly based on
a searchable encryption, which consists in the identification in the protected domain directly on the server. Not
pretending to be exhaustive in our review, we refer the reader to31 for the classification of different secure search
strategies in the encrypted domain. The existing techniques can be classified in four groups: indices based search,
when the actual search is performed based on an added index (hash of encrypted index);32 trapdoor encryption
based search, when the search is performed based on a predefined codebook of encrypted codewords;33–35 secret
sharing based search, when the data is distributed overall several servers, which are assumed to not collude;36

and homomorphic encryption based search, when the search is performed directly in the encrypted domain using
similarity features in the class of homomorphic encryption.37–39 Being attractive in terms of both communication
and security, all these approaches currently work only for exact matching or require brute force matching like



in the case of homomorphic encryption. It is obvious that for many real world applications these techniques are
unfeasible.

Therefore, one of the goals of the proposed project is to consider privacy preserving protocols enabling
identification in the protected domain based on possibly distorted or inexact queries with a limited number of
communication sessions per query.

Another very important problem recently emerged in multimedia applications is security of content iden-
tification/search systems. In recent years, content identification systems are used to spot and filter upload of
copyrighted materials on sharing platforms such as YouTube to either block or monetize it. Content identifica-
tion systems are also considered as preventions of downloads in P2P networks in a so-called graduated response.
Under such conditions, the originally friendly environment of content search for exchange systems turns out to
be quite aggressive in sense of reply to the introduced filtering, restriction and controlling functionalities. Since
the system aims at protecting value, serious hackers will try to circumvent these systems. Therefore, it is very
timely to formulate the question about the security side of content identification systems in general. To our
knowledge, this subject remains completely unexplored besides several recent results presented in.40

In fact, based on the knowledge about the robustness of identification systems to different modifications
attackers might develop new attacks. Since practically all identification systems are well described in literature
and there is no secret key used, the hacker might exploit this valuable knowledge in his attacks too. To exem-
plify these strategies, one can mention content concealment (uploading illegal materials, the hacker learns the
operational possibility of system) and abnormally frequent identification (as pirates tweak HTML pages to get
ranked higher in textual search engines in black hat SEO attacks), one can tweak for example the visual or audio
contents such that they always get (artificially) ranked high in the resulting list. Thus, a dishonest content owner
may increase his revenue thanks to this exaggerated advertisement.

Finally, the last but not the least problem is the investigation of performance (identification accuracy) under
the above requirements. When the identification systems are applied to large-scale problems, it is not always
sufficient to validate system performances on small test databases used in benchmarking as it is done in most
of scientific publications besides some rare exceptions.41 From the other side, it is also unfeasible that a small
group of researchers can practically test billion-size applications by themselves. Therefore, development of accu-
rate information-theoretic models of these systems and corresponding methods allowing to predict the system’s
performance under database scaling is of great practical importance.

The state-of-the-art information-theoretic contributions to the identification problem solution can be clas-
sified in three groups:(a) investigation of theoretical performance limits; (b) investigation of the performance-
complexity trade-off; (c) investigation of the performance-storage memory trade-off. The information-theoretic
performance limits of content identification under infinite length and ergodic assumptions has been investigated
by Willems et. al.42 using the jointly typical decoder. Along similar lines, the detection-theoretic limits have
been first studied in43 under geometrical desynchronizing distortions and a further extension of this framework
was proposed in44 for the case of finite-length fingerprinting and null hypothesis. The used decision rule is based
on minimum Hamming distance decoder with a fidelity constraint under the binary symmetric channel model.
Since this decision rule requires the computation of likelihoods/distances between the query and all database
entries, the complexity of the considered identification scheme is exponential with the input length.

The second group of identification-theoretic methods addresses the performance-complexity trade-off. Unfor-
tunately, this very important problem received little attention in the literature. Only recently, Willems published
the first paper45 dedicated to this problem. The main idea behind this approach is to split M database entries
into

√
M groups with

√
M codewords in each group. The group index is deduced based on quantization and

the remaining task is to find a valid candidate within the identified group based on
√
M checks. Therefore,

preserving the achievable identification rate to be close to the identification capacity limit, Cid, one can find the
correct index with complexity O(L

√
M) or O(L

√
2LCid). Unfortunately, for large M this fractional complexity

might be still prohibitively high. At the same time, it is not clear what is the relationship of this approach to
the reviewed above heuristic methods.

Finally, the third group of methods addresses the problem of identification rate Rid - memory (or storage rate)
Rs trade-off without considering previous issues. Westover and O’Sullivan considered this trade-off in a pattern



recognition formulation46 and Tuncel analyzed it in a large-scale database management setup.47 Unfortunately,
one could admit that the security and privacy constraints within the information-theoretic framework remain
largely unexplored.

To address the above issues, we will consider the data stored in the database as digital fingerprints, i.e., com-
pressed, robust and secure representations of digital contents. In summary, to design a practical identification
system one should find an optimal trade-off between performance in terms of probability of error (a.k.a. robust-
ness), security, privacy, memory storage, identification rate and complexity as schematically shown in Figure 1.
To our best knowledge the systematic analysis of this trade-off was not performed.

 

Robustness: 
! errorless recovery of 

fingerprint indexes 
! probability of error 

Algorithmic complexity: 
! search in large 

databases 
! approximate search 

Security: 
! ability of attacker to 

learn key 
! secrecy leakage 

Information-theoretic rate: 
! number of contents that can 

be uniquely finger-printed 
based on distinguished key 

Privacy: 
! ability of attacker to 

learn private data 
! privacy leakage 

Memory storage: 

! fingerprint storage 

rate 

Figure 1: Schematic relationship between main trade-off requirements to identification systems.

New information-theoretic approaches to fast, secure, memory efficient and accurate identification should be
proposed and investigated. This is a very challenging problem that should address compromises between various
above conflicting requirements.

This is why one of the main objectives of this paper is to introduce an information-theoretic framework able
to properly model, analyze and finally optimally trade-off these requirements. In turn, this should lead to the
development of new practical methods so urgently needed in many applications.

Moreover, many practical fingerprinting techniques neglect information about bit reliability provided by the
magnitude of fingerprint coefficient. Therefore, we will try to fulfill this gap by considering soft-fingerprinting
that can resolve the above trade-offs. The proposed methodology is based on a framework of sign-magnitude
decomposition that naturally leads to a concept of channel splitting into reliable and unreliable sub-channels.
We show that under certain conditions most of identification rate can be concentrated in the reliable channel.
We call this effect a channel polarization. However, this requires still exponential complexity of decoding for the
considered random codebooks. Therefore, to relax this critical constrain we demonstrate that slight deviation
from the optimal channel splitting, accompanied with the minor rate loss, might provide a considerable gain
in identification complexity. Such a methodology can be considered as a theoretical basis for the analysis and
generalization of approximate search strategies. The paper is organized as follow. In Section 2, we provide
the identification problem formulation. Section 3 introduces the framework of sign-magnitude decomposition
and Section 4 explains the channel polarization. Fast approximate identification trading-off achievable rate and
complexity is presented in Section 5. Section 6 concludes the paper.

Notations. We use capital letters to denote scalar random variables X, bold capital letters to denote vector
random variables X, corresponding small letters x and small bold letters x to designate the realizations of scalar
and vector random variables, respectively, i.e., x = {x(1), x(2), ..., x(N)}. bx is used to denote the binary version
of x. We use X ∼ p(x) to indicate that a random variable X follows pX(x).



2. IDENTIFICATION PROBLEM FORMULATION

To resolve the performance-complexity trade-off in the identification problem, a dimensionality reduction based
on random projections and the concept of bit reliability were proposed.48 The main idea behind the random
projection application consists in the removal of ambiguity about the data prior statistics, while information
about bit reliabilities is used to reduce the identification complexity. The schematic diagram of the proposed
approach is shown in Fig. 2.
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Figure 2: Block-diagram of content identification system.

Under such a formulation, the identification system can be analyzed within digital communication framework.
It functions in two operating modes: enrollment and identification. During the enrollment, the contents denoted
as x(m) ∈ R

N , m = 1, ...,M , are transformed into the fingerprints using the following two stage procedure.
First, x(m) of dimensionality N are projected onto a lower dimensional J (J ≤ N) space via:

x̃(m) = Wx(m), (1)

where W ∈ R
J×N , W = (w1, ...,wJ )

T
, and Wi,j ∼ N (0, 1

N
). The reason for such a design of the projection

matrix is to ensure the invariance of the system to the deviation and lack of prior statistics of X(m). It is not
difficult to demonstrate that for any i.i.d. generated x(m), x̃(m) will have Gaussian statistics with approximately

preserved diagonal covariance matrix, i.e., cov
[
X̃
]
≈ σ2

XIJ , where IJ is an identity matrix with WWT ≈ IJ.

Secondly, the projection output is converted to the binary form as follows:

bx(m) = sign (Wx(m)) , (2)

where sign denotes function that extracts the sign of a real number. The main purpose of the binarization stage
is to protect the privacy of stored contents (I(Bx; X̃) = 1), as well as to tackle data storage and computational
complexity aspects.

In the identification mode, the query, which is distorted by discrete memoryless channel (DMC), p (y|x),
version of x or x̃, is converted to the binary form according to:

ỹ = Wy = W(x+ z), by = sign (Wy) . (3)

If only binary part by of the query y is used for the identification, we will refer to it as a hard fingerprinting.
However, if in addition the magnitude |ỹ| is utilized, we will call this a soft fingerprinting.

It is important to note that, similarly to x, any additive i.i.d. noise z will be converted to the additive

Gaussian one with cov
[
Z̃
]
≈ σ2

ZIJ . Finally, the decoder that observes y and has access to the enrolled database

should decide, which one out of M alternatives is present at the system input. In most identification system
designs, the bounded distance decoding (BDD) is used.49 In order to find a match with the channel output
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Figure 3: Fingerprinting model of communications based on sign-magnitude decomposition.

in the given codebook, this method performs an exhaustive search over the entire codebook and produces the
estimate m̂ = {ǫ, 1, 2, . . . ,M}, where ǫ is the erasure or rejection

dH(by,bx(m)) ≤ γL, (4)

where dH(·, ·) denotes Hamming distance between binary vectors and product γL defines the BDD threshold,
more detailed description of which is given in.49,50 In the case of additive Gaussian model of observation
Ỹ = X̃+ Z̃, the decoding achieves the identification capacity:42

Cid = I
(
X̃; Ỹ

)
=

1

2
log2

(
1 +

σ2
X̃

σ2
Z̃

)
. (5)

Operation with real-valued X̃ and Ỹ leads to the optimal in terms of performance solution of the identification
problem, but characterized by complexity O(MJ). However, the computational complexity of this decoder is
prohibitively high for the practical usage. Additionally, the storage of X̃ is not desirable for the privacy reasons.
Thus, in the following consideration we will concentrate on the setup, where query ỹ is comparing with only
binary counterparts bx(m), 1 ≤ m ≤ M . It is important to point out that the probability of bit error between
the stored binary fingerprints and binarized query is defined by49

Pb|x̃ = Q

( |x̃|
σZ

)
, (6)

where Q(·) stands for Q-function and σZ denotes the standard deviation of the Gaussian channel.

3. SIGN-MAGNITUDE DECOMPOSITION

In the case of real-valued signals, projected coefficients can be decomposed as it is shown in Fig. 3. Keeping
in mind Gaussianity of X̃ and independence of sign and magnitude components one can split source X̃ with
h(X̃) = 1/2log2(2πeσ

2
X) into independent subsources |X̃| with differential entropy h(|X̃|) = 1/2log2(1/2πeσ

2
X)

and BX with entropy H(BX) = 1, where h(X̃) = H(BX) + h(|X̃|). Therefore, general identification channel
p(ỹ|x̃) can be decomposed into two sub-channels bx → by and |x̃| → |ỹ| with corresponding interrelations.
Storing only Bx, the information transmission is performed using binary symmetrical channel (BSC), whose
state is determined by |x̃|, while information transmission thought the |x̃| → |ỹ| channel is skipped.

Since the application of random projection mapper W with Wi,j ∼ N (0, 1
N
) leads to the additive Gaussian

noise observation model ỹ = x̃+ z̃, where z̃ represents the zero-mean Gaussian noise with the variance σ2
Z in the

projected domain. Therefore, the behavior of bits transmission in BSC bx → by is completely characterized by
probability of bit error Pb|x̃ (6). Under such a setting, many existing fingerprinting systems can be considered as
hard fingerprinting, i.e., those that do not use information about the channel state, and soft fingerprinting, i.e.,
those that benefit from this knowledge. Therefore, depending on the availability of channel state information
(CSI) one can distinguish 3 major cases:



• no CSI (S = ⊘), where only p(x̃) is known (hard fingerprinting). The identification rate under the hard
fingerprinting is:

Rid|0 = I(Bx;By|⊘) = 1−H2(P̄b), (7)

where P̄b =
∫ +∞

−∞
Q (x̃/σZ) p(x̃)dx̃ is the average probability of bit error;

• perfect CSI (S = |x̃|) (soft fingerprinting with perfect CSI). The identification rate under the soft finger-
printing with perfect CSI is:

Rid|x̃ =

∫ +∞

−∞

I(Bx;By||X̃| = |x̃|)p(x̃)dx̃ = 1− 2

∫ +∞

0

H2

[
Q

(
x̃

σZ

)]
p(x̃)dx̃; (8)

• partial CSI (S = |ỹ|) (soft fingerprinting with partial CSI). The identification rate under the soft finger-
printing with partial CSI is:

Rid|ỹ = 1− 2

∫ +∞

0

H2

[∫ +∞

−∞

Q

(
x̃+ z

σZ

)
p(z̃)dz̃

]
p(x̃)dx̃. (9)

The identification rates under hard fingerprinting, soft fingerprinting with perfect and partial CSI are shown
in Fig. 4. The observation model is considered in terms of the signal-to-noise ratio (SNR) defined as SNR =
10 log10(σ

2
X/σ2

Z). For the comparison reasons the capacity of the AWGN identification channel (5) is also shown
in Fig. 4. Based on the obtained results one can conclude that presence of perfect CSI at the decoder enhances
the identification rate with respect to the hard fingerprinting. Also, partial CSI at the decoder enhances the
identification rate for the high SNRs, i.e., in the region where it is not severely corrupted by the observation noise,
and contrarily slightly degrades the rate with respect to the hard fingerprinting for the low SNRs. Achievable
identification rate for all considered fingerprinting techniques is saturated at 1 for the high SNR. The gap
between the identification rate of the AWGN channel and fingerprinting one is in part of I(|X̃|; |Ỹ |).
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Figure 4: The identification rates under hard fingerprinting and soft fingerprinting with perfect and partial CSI.

We also introduce the practical model achieving the above theoretical limits based on a channel splitting.
The channel splitting model assumes that bits are transmitted via several BSCs with parameters defined by the
CSI. In the most simple case of 2-channel splitting, two BSCs are considered. At this moment, we assume that
S = |x̃|. The channel splitting can be performed based on the thresholding of coefficient magnitudes with the
threshold T (Fig. 5). The L fingerprint bits related to the large magnitude coefficients are considered as those
belonging the good BSC with the cross-over probability PG

b and the remaining to the bad one with PB
b . The

cross-over probabilities for good and bad channels based on the perfect CSI (S = |x̃|) are:

PG
b|x̃ =

2

PrG

∫ +∞

T

Q

(
x̃

σZ

)
p(x̃)dx̃, (10)

PB
b|x̃ =

2

PrB

∫ T

0

Q

(
x̃

σZ

)
p(x̃)dx̃, (11)



x!

( )p x!

T! T

x -1 x 1 x -1"x
b

Figure 5: Channel splitting based on thresholding.

where PrG = 2
∫ +∞

T
p(x̃)dx̃ and PrB = 2

∫ T

0
p(x̃)dx̃ correspond to the probabilities of observing the good and

bad channels, respectively. The corresponding identification rates are:

RG
id|x̃ = PrG

(
1−H2

(
PG
b|x̃

))
, (12)

RB
id|x̃ = PrB

(
1−H2

(
PB
b|x̃

))
, (13)

and the total rate is:
R2Ch

id|x̃ = RG
id|x̃ +RB

id|x̃. (14)

The cross-over probabilities for good and bad channels based on the partial CSI (S = |ỹ|) are:

PG
b|ỹ =

2

PrG

∫ +∞

T

[∫ +∞

−∞

Q

(
x̃+ z̃

σZ

)
p(z̃)dz̃

]
p(x̃)dx̃, (15)

PB
b|ỹ =

2

PrB

∫ T

0

[∫ +∞

−∞

Q

(
x̃+ z̃

σZ

)
p(z̃)dz̃

]
p(x̃)dx̃. (16)

The corresponding identification rates are:

RG
id|ỹ = PrG

(
1−H2

(
PG
b|ỹ

))
, (17)

RB
id|ỹ = PrB

(
1−H2

(
PB
b|ỹ

))
, (18)

and the total rate is:
R2Ch

id|ỹ = RG
id|ỹ +RB

id|ỹ. (19)

The total cross-over probability Pb remains the same regardless the value of threshold T :

Pb = 2

∫ +∞

0

Q

(
x̃

σZ

)
p(x̃)dx̃ = PG

b|x̃Pr
G + PB

b|x̃Pr
B . (20)

4. CHANNEL POLARIZATION

The channel splitting by the selection of threshold T can be performed according to several strategies:

• Strategy 1: maximize the total rate R2Ch
id|x̃ or R2Ch

id|ỹ to approach upper theoretical limits Rid|x̃ or Rid|ỹ,
respectively, that gives optimal values of thresholds Topt|x̃ and Topt|ỹ for each SNR;

• Strategy 2: minimize probabilities PG
b|x̃ or PG

b|ỹ for search complexity reasons48 that creates a sort of
channel polarization after some SNR, when certain amount of bits can be communicated without errors.
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Figure 6: Approaching theoretical rates based on 2-channel splitting model for the optimal threshold selection:
(a) achievable identification rates under different CSIs, (b) optimal thresholds for perfect and partial CSI.
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b|ỹ(T = 1)

P
B
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According to strategy 1, the binary channel splitting approaches theoretical performance limits under the
optimal threshold selection as shown in Fig. 6a. The remaining gap is easily compensated by more accurate
models using more than 2 channels splitting model. The optimal thresholds Topt|x̃ and Topt|ỹ are shown in
Fig. 6b.

To exemplify strategy 2 we show in Fig. 7a the pairs of cross-over probabilities for good and bad channels
under perfect and partial CSI that resulted from the strategy 1. Fig. 7b shows the same pairs for the fixed
threshold T , where one can clearly observe the significant reduction of PG

b|x̃ or PG
b|ỹ that asymptotically goes to

zero for SNR > 15dB.

Obviously, this strategy is not optimal in terms of total rate maximization. However, the expected loss in
the approaching the total rate with the minimization of PG

b|ỹ is minor. The dependence of achievable rates and
cross-over probabilities on the threshold T are shown in Fig. 8 for SNR in the range of 10 ÷ 30dB. The rate
of convergence of PG

b|ỹ to zero is exponential with respect to the loss in the identification rate. The plots also
clearly demonstrate the polarization effect, when almost all useful rate is concentrated in the good channel and
the bad channel can be completely disregarded from the data transmission point of view.

5. LOW COMPLEXITY IDENTIFICATION

In this Section, we introduce the practical framework for trading-off performance and complexity in the identifi-
cation. Contrarily to most state-of-the-art approximate search strategies, where the identification rate remains
undefined,16,27,51 our goal is to develop a technique, where performance of the system will be evaluated not
only in terms of the probabilities of making incorrect decisions, but also assessing the identification rate. The
main advantage one can obtain by including into the consideration this digital communication parameter is the
ability to determine the database cardinality, below which all quires can be uniquely identified. Under these
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Figure 8: Achievable rates and cross-over probabilities for channel splitting at SNR=10, 20, and 30dB.

constraints, the implementation will target the exact matching requiring only reading/writing operations rather
than multiplication summation operations.

Prior to the consideration of the proposed setup, we would like to point out that optimal performance in com-
munication protocols over the BSC with the cross-over probability Pb in terms of achievable rates is attained by
the minimum distance decoding counterpart of (4) that requires O(MJ) distance computations for a sufficiently
large J . Although, efficient hardware tools are currently available for Hamming distance computation,52 search
complexity can still represent an issue preventing system implementation in real time. Therefore, our objective
is to benefit from the available CSI extracted from y targeting reduction of the computational burden.

Our main motivation comes with the channel splitting paradigm that was introduced and developed in the
above Section. According to this paradigm, one can assume that a vanishing probability of error PG

b|ỹ can be
achieved in good channels under a proper selection of the threshold T . Therefore, one can claim that the outputs



of these good channels will almost surely replicate their inputs and the corresponding bits in a set of positions
of bx(m), 1 ≤ m ≤ M, and y, which can be identified based on the CSI, coincide.

Using such an errorless transmission phenomenon, we propose the following identification system architecture
based on channel polarization and sign-magnitude decomposition (Fig.2). According to the advocated approach,
it is assumed that the entire database obtained in the enrollment stage is permanently stored in the RAM of the
identification server. The database is composed with M binary vectors of length J that are obtained by applying
random projections and binarization (2) to the contents x(m), 1 ≤ m ≤ M .

At the identification stage, the query is converted to the binary format according to (3) and its magnitude is
stored accordingly. Then, the positions of L(L < J) most reliable bits are determined based on the imperfect CSI
that is represented by sorted |ỹ|. Afterwards, the originally stored codebook of MJ binary entries is modified to
the reduced one wit ML entries only. Finally, a match of the length L binary query versus the reduced database
is performed targeting unique identification of m̂ ∈ {ǫ, 1, 2, ...,M}.

It is easy to demonstrate using an information-theoretic argument that the maximum achievable rate of
identification in the original setup with M length J codewords is given by the capacity of the BSC with the
cross-over probability Pb that coincides with Rid|0 (7). Therefore, one can claim unique identification of 2JRid|0 =

2J(1−H2(Pb)) codewords that is achieved with complexity upper limited by O(MJ) = O(J(1 −H2(Pb))) binary
distance computations.

Oppositely, in the case only L good channels are used for identification, the maximum identification rate
RG

id|ỹ (17) is defined by the average probability of error in these channels PG
b|ỹ (15). Such a result is achieved with

the corresponding upper bound on the complexity that is defined as O(ML) = O(L(1 − H2(P
G
b|ỹ))) matching

operations. Therefore, the overall identification complexity depends on the PG
b|ỹ. It defines the number of bit flips

that happens in a binary vector of length L at the output of the corresponding BSC via B
−1(1−ξ, L, PG

b|ỹ), where

B
−1(ξ, L, p) denotes the inverse cumulative distribution function of the Binomial distribution of the parameters

(α,L, p) and ξ is a small positive constant. The number of errors in the entire codebook can be then evaluated
as follow:

terror = B
−1(1− ξ, L ·M,PG

b|ỹ). (21)

Thus, in the case terror approaches zero, one can claim that the observed query exactly coincides with the
database entry and in such a situation any distance computations are no required. For instance, if one would
like obtain terror = 0 with ξ = 10−5 in database with about 7 millions entries, PG

b|ỹ = 10−15 has to be satisfied
in the reduced codebook with a codeword length L = 618. In order to investigate a feasibility of getting such
low values of PG

b|ỹ = 10−15, we analyzed a joint behavior of this probability of error versus Rid|ỹ as functions of
the threshold for various SNRs that separates good and bad channels. First, one can admit that in case the
system operates in a blind mode, i.e., no CSI is taken into account, the corresponding achievable rate is attained
for the probability of bit error that is far apart from the sought order of 10−15 (Fig. 9). Therefore, no exact
matching is possible in this regime. Alternatively, as one can easily observe from Fig. 9, the required reduction
of the probability of error could be achieved in the imperfect CSI assisted setup in price of certain RG

id|ỹ loss.

Remarkably, for the case of SNR = 25 dB, the target (PG
b|ỹ = 10−15) is attained for the RG

id|ỹ reduction from

0.89 bits/sample to 0.6 bits/sample, i.e., approximately for a 30% loss of the identification rate.

Evidently, reduction of the probability of error is achieved by a more conservative good channel separation
threshold. Therefore, in order to guarantee that the above analysis is valid and the number of good channels
equals L, one should guarantee a sufficiently large J . This phenomenon is relevant to the enrolled database
memory storage since according to the main assumption the entire collection of codewords is stored in the
identification server RAM.

6. CONCLUSIONS

In this paper, we have presented the theoretical analysis of performance-complexity trade-off in the identification
problem based on the channel splitting paradigm. Considering identification as communication thought the
parallel channels with partially known channel state information, the effect of channel polarization, i.e., separation
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Figure 9: Identification operational characteristics.

of the channels to the subsets of channels with good (negligible small Pb) and bad (high Pb) characteristics, was
investigated and used to build identification algorithms with reduced complexity. The above analysis considers
identification as an joint optimization with respect to its accuracy (performance) and speed (computational
complexity) with the fixed level of privacy leakage. Our future work should be conducted to incorporate privacy
into this joint trading-off procedure.
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