
UNIVERSITE DE GENEVE

CENTRE UNIVERSITAIRE
D'INFORMATIQUE
GROUPE VISION

Date:

No

First version: October 6, 1999

This version: June 22, 2000
99.04

TECHNICAL REPORT

VISION

MRML: Towards an extensible standard for

multimedia querying and benchmarking

Draft Proposal

Wolfgang M�uller Zoran Pe�cenovi�c1 Arjen P. de Vries2�

David McG. Squire Henning M�uller Thierry Pun

Computer Vision Group
Computing Science Center, University of Geneva

24 rue du G�en�eral Dufour, CH - 1211 Geneva 4, Switzerland

1Laboratoire de Communications Audio-Visuelles and Groupe de
l'Ergonomie des Syst�emes Intelligents

in the Institut de Microtechnique (IMT) Ecole Polytechnique
F�ed�erale de Lausanne, Switzerland

2Department of Computer Science
University of Twente, The Netherlands

e-mail: Wolfgang.Mueller@cui.unige.ch,
Zoran.Pecenovic@lcav.de.ep
.ch

�Arjen was happy to test that thanks still worked.

Abstract

In this technical report we introduce and describe the MultimediaRetrievalMarkup
Language (MRML). This XML-based markup language is the basis for an open com-
munication protocol for content-based image retrieval systems (CBIRSs). MRML was
initially designed as a means of separating CBIR engines from their user interfaces.
It is, however, also extensible as the basis for standardized performance evaluation
procedures.

Such a tool is essential for the formulation and implementation of common bench-
marks for CBIR. A common protocol can also bring new dynamics to the CBIR
�eld|it makes the development of new systems faster and more e�cient, and opens
the door of the CBIR research �eld to other disciplines such as Human-Computer
Interaction. The MRML speci�cations, as well as the �rst MRML-compliant applica-
tions, are freely available and are introduced in this technical report.

Keywords: multimedia database,interoperability,query language

1 Introduction

The development of research can be described as moving in two directions

� search for new, useful query and interaction paradigms

� deeper research to improve the performance of systems that have adopted a given
query paradigm.

The search for new better performance given a query paradigm has led to \clusters" of
systems which are similar in their interaction with the user, and which give a certain set
of interaction capabilities to the user.

It is already visible that research will move towards systems which enable the user to
formulate multi{paradigm queries in order to further improve results.

As a consequence of the above, there is the need for

� A common mechanism for shipping multi{paradigm queries and their results. Such
a mechanism assures that the right query processor processes the right query.

� For each paradigm a common language, which allows to formulate queries in this
paradigm.

Ful�lling these needs would enable the di�erent communities to share user interfaces.
At present almost every group has its own interface suiting its purposes. However, many
interfaces are very much alike. Ful�lling these needs would also enable the di�erent com-
munities to share implementations without sharing the code. Comparing the resulting
systems of di�erent groups of a research domain would be easier, if one could make them
accessible to outside scripts without publishing the actual code.

The query shipping{mechanism should be designed in a way that it does not constrain
ongoing and future research regarding both the search for optimal query formulation for
each paradigm and the research for new query paradigms for MMDB queries. In short,
the query{shipping mechanism should separate the communication problem from the query
formulation problem, letting research groups evolve freely to �nd good domain speci�c
query formulation schemes.

MRML, as proposed in this technical report, provides such a shipping{mechanism.
In addition to the requirements stated above it was designed for making the use of it as

1

simple as possible, thus allowing groups with exotic development environments and little
manpower to be able to use MRML.

MRML in the current version provides a complete solution for QBE in CBIRS, which
was the initial use of MRML.

MRML is an XML based language for the communication between MMDB server
and user interface. In this technical report we demonstrate the utility of the framework
provided by MRML by giving the example how we use MRML in our Viper system.

The technical report is organized as follows:
First we describe the general framework with emphasis on extensibility. After this we give
the �rst application of MRML which is the use in our CBIRS systems together with the
CIRCUS interface written by one of us (Z.P.).

2 The design of the MRML query shipping framework

Common positions always limit the freedom of the individual. However, in this case the
design is easily extensible. In this section we propose a development strategy which will
preserve the freedom of the individual research groups, while keeping the standard.

When designing MRML we were lead by the following goals:

Extensibility Our main concern was to provide a framework which permits independent
growth of the products of di�erent research groups (followed by periodical code
merging).

No preferred implementation language We want to leave the developer the freedom
of choice of the implementation language. A standard like this is unlikely to be
adopted by the research community, if it works only with a given \mainstream"
computing environment.

Independence of third{party libraries We want the use of the communication pro-
tocol to be as independent from third party libraries as possible. A group should be
able to provide its own tools within �nite time.

Our choice is to use an XML (eXtensible Markup Language) DTD (Document Type
De�nition { a grammar) for the speci�cation of our communication protocol, together
with speci�cations for the transmission of messages, and for extensions of the protocol.

When making this choice we saw mainly the alternative of using EJB (Enterprise
Java Beans), CORBA, and other methods of remote procedure calls. However, we feared
strong links with languages (Java/EJB) or large program packages (CORBA). A further
advantage of XML is that the use of an XML for communication directly implies a common
human readable log �le format of this communication.

The attractiveness of XML is further increased by the existence of free tools in nu-
merous programming languages. XML has been designed explicitly for simplifying parser
design. XML has to be parsable by deterministic parsers, thus it is simple to implement
one's own XML/MRML parsers.

2.1 The structure of XML and \graceful degradation"

The structure of XML is similar to that of HTML, which stems from their common an-
cestry, i.e. SGML (Standard Generalized Markup Language): an XML document can be
seen as a tree of \elements" which themselves contain other elements. The content of each
node of the document tree is a list of attribute-value pairs, as well as a sequence of nodes

2

(possibly interleaved with text). This structure is encoded using so called \tags" for the
elements. The \opening tag" of an element with type t and attribute anAttribute being
set to x would be <t anAttribute="x">. The \closing tag" of an element t would be
< =t>.

This free structure is constrained by a Document Type De�nition (DTD) which is a
grammar for the tree structure. The details can be found in [1].

Graceful degradation is the key to successful independent extension of MRML. The
basic principles can be summarized as follows:

� servers and clients which do not recognize an XML element or attribute encountered
in an MRML text should completely ignore its contents,

� extensions should be designed such that all the standard information remains avail-
able to the generic MRML user (see examples in x 3). In other words, the modi�-
cations of the standard MRML should be as local as possible therefore not create
global changes which, from the above would be dismissed by standard parsers (see
the examples in section 3).

These principles provide guidelines for independent extensions of MRML. To avoid con-

icts between di�ering extensions of MRML, we plan to maintain or promote a central
database for the registration and documentation of MRML extensions. This would also
facilitate the \translation" between user logs which contain extended MRML.

2.2 A walk through of MRML

MRML-based communications have the structure of a remote procedure call: the client
connects to the server, sends a request, and stays connected to the server until the server
breaks the connection. The server shuts down the connection after sending the MRML
message which answers the request. This connectionless protocol has the advantage of
easing the implementation of the server. To limit the performance loss caused by frequently
reconnecting, it is possible to send several requests as part of a single MRML message. The
extension of MRML to a protocol permitting the negotiation of a permanent connection
is also planned.

MRML, in its current speci�cation (and implementation) state, supports the following
features:

� request of a capability description from the server,

� selection of a data collection classi�ed by query paradigm; it is possible to request
collections which can be queried in a certain manner,

� selection and con�guration of a query processor, also classi�ed by query paradigm;
MRML also permits the con�guration of meta-queries during run time,

� formulation of QBE queries,

� transmission of user interaction data.

The �nal feature re
ects our strong belief that a�ective computing [6] will soon play a
role in the �eld of content-based multimedia retrieval. MRML already supports this by
allowing the logging of some user interaction data. In particular, this is the case for the
history-forward and history-backward functionalities of the SnakeCharmer interface.

3

2.3 Logging onto a CBIR server

An MRML server listens on a port for MRML messages on a given TCP socket. When
connecting, the client requests the basic properties of the server, and waits for an answer.
Skipping standard XML headers, the MRML code looks like this:

<mrml>

<get-server-properties />

</mrml>

The server then informs the client of its capabilities. This message is empty in the
current version of MRML, but it allows for the extension of the protocol:

<mrml>

<server-properties />

</mrml>

Using similar simple messages, the client can request a list of the collections available
on the server, together with descriptions of the ways in which they can be queried.

The client can then open a session on the server, and con�gure it according to the
needs of its user (interactive client) or its own needs (e.g. meta-query agents). The client
can also request the algorithms which can be used with a given collection:

<mrml>

<get-algorithms

collection-id="collection-1" />

</mrml>

This request is answered by sending the corresponding list of algorithms. This hand-
shaking mechanism allows both interactive clients and programs (such as meta-query
agents or automatic benchmarkers) to obtain information describing the server.

In a similar simple manner, the client can open and close sessions for a user, and
con�gure the algorithms chosen by the user. This enables multi-user servers and also
on-the-
y learning by the query processor.

2.4 Interface con�guration

The client can then request property sheet descriptions from the server. Di�erent al-
gorithms will have di�erent relevant parameters which should be user-con�gurable (e.g.
feature sets, speed vs. quality). Viper , for example, o�ers several weighting functions [7]
and a variety of methods for, and levels of, pruning. All these parameters are irrelevant
for CIRCUS. Thanks to MRML property sheets, the interface can adapt itself to these
speci�c parameters. At the same time, MRML speci�es the way the interface will turn
these data into XML to send them back to the server. Here is short example of interface
con�guration:

<property-sheet

property-sheet-id="s1"

type="numeric"

numeric-from="1"

numeric-to="100"

numeric-step="1"

caption="\% features evaluated"

send-type="attribute"

send-name="cui-percentage-features" />

4

This speci�es a display element which will allow the user to enter an attribute with the
caption \% of features evaluated". The values the user will be able to enter are integers be-
tween 1 and 100 inclusive. The value will be sent as an attribute e.g. cui-percentage-features="33".
This mechanism allows the use of complex property sheets, which can send XML text con-
taining multiple elements. The interested reader is referred to the appendix for details.

2.5 Query Formulation

The query step is dependent on the query paradigms o�ered by the interface and the search
engine. MRML currently includes only QBE, but it has been designed to be extensible to
other paradigms.

A basic QBE query consists of a list of images and the corresponding relevance lev-
els assigned to them by the user. In the following example, the user has marked two
images, the image 1.jpg positive (user-relevance="1") and the image 2.jpg negative
(user-relevance="-1"). All query images are referred to by their URLs.

<mrml session-id="1" transaction-id="44">

<query-step session-id="1"

resultsize="30"

algorithm-id="algorithm-default">

<user-relevance-list>

<user-relevance-element

image-location="http://viper.unige.ch/1.jpg"

user-relevance="1"/>

<user-relevance-element

image-location="http://viper.unige.ch/2.jpg"

user-relevance="-1"/>

</user-relevance-list>

</query-step>

</mrml>

The server will then return the retrieval result as a list of images, again represented
by their URLs.

Queries can be grouped into transactions. This allows the formulation and logging
of complex queries. This may be applied in systems which process a single query using
a variety algorithms, such as the split-screen version of TrackingViper [4] or the system
described by Lee et al. [3]. It is important in these cases to preserve in the logs the
knowledge that two queries are logically related one to another.

3 Extending MRML

In order to demonstrate how easily MRML can be extended to other query paradigms,
we give as an example QBE for images with user annotation. We assume that the user
is invited to associate textual comments with images he or she marks as relevant or ir-
relevant. Since a tag for this purpose does not yet exist in MRML, we add an attribute
cui-user-annotation="..." to the element. The pre�x cui- is added to avoid name clashes
with extensions from other groups which use MRML.

<user-relevance-list>

<user-relevance-element

image-location="file:/images/1.jpg"

user-relevance="1"

cui-user-annotation="tropical fish"/>

</user-relevance-list>

5

It is important to note here that servers which do not recognize the cui-user-annotation
attribute still can make use of the remaining information contained in the user-relevance-element
element.

As an example of how not to extend MRML, we give an extension with the same
semantics but which does not respect the principle of graceful degradation:

<user-relevance-list>

<cui-user-relevance-element

image-location="file:/images/1.jpg"

user-relevance="1"

user-annotation="tropical fish">

</user-relevance-list>

Instead of adding an attribute to an existing MRML element (user-relevance-element),
a new element was de�ned that contained the same kind of extension, namely cui-user-relevance-element.
Consequently, servers which do not recognize this element will not be able to exploit any
relevance information.

4 Future work in the speci�cation of MRML

There are two main directions concerning further work on MRML and related goals.

1. Enhancing MRML: it is already clear at the time of writing, that MRML as is, very

exible, already very useful, but incomplete. We need to incorporate (at least):

� region queries

� text in queries

Here we are hoping for cooperation with working groups who are using these query
techniques in their systems. We would like to make MRML a \living standard",
always keeping language speci�cation and implementation date close together.

An analysis of what could be done in the future can be found in [2].

2. Providing tools: In our opinion the best way of using the advantages created by
MRML is to pool common tools which can be used and exchanged within the research
community.

5 State and future of the implementation

NOT implemented are

� the multiset property sheet element,

� the enforcement of subset size constraints

� the the visibility attribute (everything is popup)

� the client side of enabling meta algorithms

Everything else is implemented demonstrated under: http://viper.unige.ch/.

6

References

[1] Extensible markup language (xml) 1.0 (w3c recommendation 10-february-1998).

[2] Yuan-Chi Chang, Lawrence Bergmann, John R. Smith, and Chung-Sheng Li. Query
taxonomy of multimedia databases. In Panchanathan et al. [5]. (SPIE Symposium on
Voice, Video and Data Communications).

[3] Catherine S. Lee, Wei-Ying Ma, and HongJiang Zhang. Information Embedding Based
on User's Relevance Feedback for Image Retrieval. In Panchanathan et al. [5]. (SPIE
Symposium on Voice, Video and Data Communications).

[4] Wolfgang M�uller, David McG. Squire, Henning M�uller, and Thierry Pun. Hunting
moving targets: an extension to Bayesian methods in multimedia databases. In Pan-
chanathan et al. [5]. (SPIE Symposium on Voice, Video and Data Communications).

[5] Sethuraman Panchanathan, Shih-Fu Chang, and C.-C. Jay Kuo, editors. Multimedia
Storage and Archiving Systems IV (VV02), volume 3846, Boston, Massachusetts, USA,
September 20{22 1999. (SPIE Symposium on Voice, Video and Data Communications).

[6] Rosalind W. Picard. A�ective Computing. MIT Press, Cambridge, 1997.

[7] Gerard Salton and Chris Buckley. Term weighting approaches in automatic text re-
trieval. Technical Report 87-881, Department of Computer Science, Cornell University,
Ithaca, New York 14853-7501, November 1987.

A Further documentation of MRML

A.1 State machine of MRML client{server communication

Client{server{communication in MRML is a sequence of connections. In each connection a
single request or a small groups of requests is answered by the server using a single message
or a small group of messages. The state machine in �g. A.1 describes the communication
starting with the point where the �rst makes contact with the server.

The client establishes �rst contact with the server by sending a get-server-properties
message. As a response the client receives a server-properties which is empty for stan-
dard MRML. However, this message is an important stub for extensions which concern the
connection itself (e.g. �nding out, if the server is able to do a session using a permanent
connection.

After receiving the con�guration description, the client will ask for a list of sessions for
a user, using the get-sessions tag. The reply is a session-list. The client will now
open one session using open-session, getting an acknowledge-session-op as return.
The opened session is required to have a sensible default state, i.e. a state which allows
queries.

Opening the session, the server has received the user's name, password and the session-
id. I.e. it has all the necessary information for knowing which collections and algorithms
the user should see. Please note, that no one is forced to do user-dependent con�guration
of the system, but MRML gives the possibility of doing so. So, after opening the session,
the client has the possibility to request both lists of collections and algorithms.

Both collections and algorithms are described by the query-paradigms they allow, as
well as some other parameters. In particular, an algorithm can contain as an attribute
the ID of a collection on which it will be used.

7

begin-transaction

query-step

user-data

end-transaction

configure-session

configure-session

open-session

get-sessions

get-configuration

get-collections

get-algorithms

open-session

close-session

Figure 1: The state grammar of MRML client{server communication.

8

Getting both a list of collections and a list of algorithms, the client has enough in-
formation to con�gure the session which has been opened: when con�guring the session,
the client sends a configure-session signal which contains an algorithm with the at-
tributes algorithm-id and algorithm-type set. The attribute collection-id a suitable
algorithm.

After this, the session is fully con�gured and can be queried (using query-step).
Queries can be grouped into transactions for group queries for logging and learning pur-
poses.

Intermixed with the queries, the client is able to send user-data to the server. These
user data tags contain user interaction information for logging and learning purposes.

A.2 query-paradigms

Algorithms are described by their algorithm-id and their algorithm-type, as well as
by their query-paradigm-list. A query-paradigm-list contains query-paradigm el-
ements which contain an unspeci�ed number of attributes. One of which can be the
attribute query-mode which at present has the possible values "qbe" or "browsing". All
other attributes presently are extensions.

The main use of the query paradigm list is to enable clients to determine which collec-
tion can be used with which algorithm. In short, an algorithm can used with a collection,
if their query-paradigm-lists match.

Two query-paradigm-lists l1 and l2 match, if there is at least one pair of query-paradigms
e1 2 l1, e2 2 l2 such that e1 and e2 match. Two query-paradigms e1;2 match, if for the
sets of their attribute{value pairs S1;2 holds:

((a; v1) 2 S1 and (a; v2) 2 S2) =) (v1 = v2)

In particular, a query-paradigm tag without attributes matches any other query-paradigm
tag.

A.3 Algorithms

As it was said, Algorithms are described by their algorithm-id and their algorithm-type,
as well as by their query-paradigm-list, and (optionally) a allows-children element
(which in turn contains another query-paradigm-list).

As described in the last section, the �rst query-paradigm-list speci�es which col-
lection can be queried with this algorithm, and it informs the client about its properties.
The client or its user can then decide if to proceed or not.

It is possible to specify algorithms recursively. Algorithms can contain other algo-
rithms, possibly several of one type algorithm-type, the algorithm-id however, has to
be unique in one configure-session statement. It is thus possible to let the client specify
meta-queries. Which kind of meta queries can be built, decided by the allows-children
tag. An algorithm a1 is allowed to contain another algorithm a2, if the query-paradigm-list
contained in the allows-children tag of a1 matches the query-paradigm-list of a2.

A.4 MRML property sheets

MRML property sheets are a method to work around the fact that the a common set of
con�guration parameters for image databases is di�cult to �nd and probably awkward

9

to use. We suggest to achieve this by sending code which allows to build GUIs (i.e. the
subset you would need for con�guration of an algorithm), along with a speci�cation of
how to generate pieces of XML code from the GUI's state. This code is XML and it will
not be executed, so, to our knowledge, there is no inherent security hole.

A.4.1 A simple example

Viper is a system which uses inverted �les for the indexation of images. Each image
is translated in a variable{length sequence of features which describe the image. Each
feature is assigned a weight determined dependent on the frequency of the feature within
the image and within the collection. How exactly this is done, depends on the weighting
functions. Both retrieval performance and processing speed of the system depend on the
weighting function.

Viper gives the possibility to choose the weighting function at runtime, using an at-
tribute cui-weighting-function of the algorithm element. The following property sheet
gives the possibility to choose between two weighting functions.

The \basic need" of a system would be to specify the collection, i.e. the database on
which the retrieval is to be performed. For testing and comparison it would be interesting
to have the choice between several algorithms (e.g. wavelet coe�cient/color histogram
based).

A choice out of a list of two elements:

<property id="p1"

type="subset"

caption="Weighting function"

visibility="visible"

sendtype="attribute"

sendname="cui-weighting-function"

minsubsetsize="1"

maxsubsetsize="1">

<property id="p2"

type="setelement"

caption="Best fully weighted"

visibility="visible"

sendtype="value"

sendvalue="best-fully";

defaultstate="selected"

>

</property>

<property id="p3"

type="setelement"

caption="Classical IDF"

10

visibility="visible"

sendtype="value"

sendvalue="classical-idf";

defaultstate="unselected"

</property>

</property>

What does this do exactly?

� it de�nes a list of which the user is allowed to chose a subset of size between 1 and
1, i.e. an exclusive choice.

� When asked for its state this list will generate an attribute, i.e. the text given by
send-name, plus =: cui-weighting-function=.

� The value of the attribute will be determined as follows: follows: property Ele-
ments p1 and p2 are identical in structure. They denote the elements of our set
which can either be selected or unselected. If selected they send a text which
will be placed like an attribute value (value). This text will be "best-fully" or
"classical-idf", depending on which of the two list items is chosen by the user.

As a result: the piece of MRML above will enable the interface to set up a property
sheet which comprises a list of two items, of which one can be selected. Depending on the
selection, the interface will send either

cui-weighting-function="best-fully"

or

cui-weighting-function="classical-idf"

to the server. The MRML client will use this property sheet when generating a configure-session
message.

A.4.2 More complex: generate XML subtrees

The following example describes the generation of whole document subtrees. This feature
is not yet immediately useful for Viper or CIRCUS. However it provides an explanation
on how the text generated in the previous is included into configure-session message.
More important is the fact that it provides a general framework for describing (GUI)
entities which can send XML.

Consider the following example: Imagine an algorithm which runs the query image
through a series of �lters before running them through a simple query processor. Being a
research system, we would like these �lters to be run-time-con�gurable. Each �lter needing
some parameters, the and number of �lters being variable, we simply need to de�ne some
new MRML tags which permit us to describe the sequence of �lters. We would an output
like the one given below:

11

<cui-filter-list>

<cui-filter cui-filter-type="horizontal-gabor"

cui-filter-gabor-sdev="50"

cui-filter-gabor-wavelength="10"/>

<cui-filter cui-filter-type="gauss" cui-filter-gauss-sdev="5"/>

</cui-filter-list>

The corresponding property sheet would look like:

<property id="p1"

type="panel"

caption="Filter Sequence"

visibility="invisible"

send-type="element"

send-name="cui-filter-sequence"

>

<property id="p1"

type="multi-set"

caption="Filter"

visibility="visible"

send-type="element"

send-name="cui-filter"

minsubsetsize="0"

maxsubsetsize="5">

<property id="p11"

type="set-element"

caption="Gaussian blur"

visibility="pop-up"

sendtype="attribute"

sendname="cui-filter-type"

sendvalue="gauss"

defaultstate="selected"

>

<property id="p111"

type="numeric"

caption="Standard deviation"

visibility="pop-up"

sendtype="attribute"

sendname="cui-filter-gauss-sdev"

/>

12

</property>

<property id="p12"

type="set-element"

caption="Horizontal Gabor"

visibility="pop-up"

sendtype="attribute"

sendname="cui-filter-type"

sendvalue="horizontal-gabor"

defaultstate="selected"

>

<property id="p121"

type="numeric"

caption="Tile size"

visibility="pop-up"

sendtype="attribute"

sendname="cui-filter-gabor-sdev"

numeric-from="5"

numeric-to="100"

numeric-step="5"

/>

<property id="p122"

type="numeric"

caption="Tile size"

visibility="pop-up"

sendtype="attribute"

sendname="cui-filter-gabor-wavelength"

numeric-from="2"

numeric-to="20"

numeric-step="1"

/>

</property>

</property>

</property>

The example above shows exactly the described scenario: The user has the choice to
use sequences of 0 up to 5 �lters. The �lters can be either Gaussian blur or horizontal
gabor �lters (yes, this is a toy example).

The Gaussian blur can be con�gured by giving a number between 1 and 100, which
will be sent as an attribute (cui-filter-gauss-sdev). The gabor �lter can be con�gured
using the two parameters cui-filter-gabor-sdev and cui-filter-gabor-wavelength.

Both the con�guration panels will pop-up when the corresponding �lter has been
selected in the sequence.

In the following section we describe how the text is actually generated, and how dialog

13

dynamics is speci�ed.

A.4.3 A more formal description of MRML property sheets

As it has become clear from the examples, GUIs sent using MRML property sheets are
in fact a tree of property sheets. Both the XML generated by the property sheet and the
dialog dynamics are de�ned using simple rules.

Dialog dynamics A property element is visible on the screen, if

1. all its ancestors are visible

2. AND

� its parent is non{selectable OR selected

� OR its parent has the visibility="visible" attribute set.

selectability of property elements will be de�ned below.
A property element is active, if

1. all its ancestors are active

2. AND its parent is non{selectable OR selected

An active property element is de�ned as an element that can be used for its purpose, i.e.
it will be enabled on the GUI screen.

Generating XML XML is generated during a depth-�rst-traversal of the property

tree as follows:

� The XML string generated by a sequence of active elements is equal to the concate-
nation of the XML strings generated by each element. The sequence of concatenation
is equal to the physical sequence of property elements in the MRML text.

� The XML string generated by an inactive element is empty.

� The XML string generated by an active element is given by the send-type of the
property element

send-type="element": If there is any beginning of an opening tag in the XML
generated by the ancestors of this property element, it will be ended by adding
an > to the text generated so far.

Afterwards this property element will generate the beginning of the opening
tag of an XML element with a name that is speci�ed by the attribute sendname,
followed by a space and the content of the attribute send-value. As an ex-
ample: if for a given element the sendname attribute has the value xxx, and
the content of the send-value attribute is 'myattribute="5"', the generated
output will be <xxx myattribute="5".

After that the children are evaluated in sequence and a closing tag of the element
will be generated. Before that, the opening tag will be ended, if necessary.

(/</xxx>/, in our example)

14

send-type="attribute": If there is no beginning of an opening tag in the XML
generated by the ancestors of this property sheet no text will be generated.

If there is any beginning of an opening tag in the XML generated by the an-
cestors of this property sheet there are the following possibilities:

value is nonempty Generate the text given by the values of the attributes
sendname and send-value in the de�nition of this property. For ex-
ample sendname="myattribute" send-value="33" will lead to the text
myattribute="33" as output.

value is empty begin an attribute de�nition with a name given by the value of
the attribute sendname. For example sendname="myattribute" send-value=""

will lead to the text myattribute= as output. The actual de�nition of the
value can be provided in two ways:

{ If the current property has an inherent value (i.e. is numeric, boolean
or textual), this value is taken, and thus the attribute de�nition will
be ended.

{ The value de�nition will be provided by a child.

send-type="value": If there is no attribute de�nition, which has been begun by
any ancestor or sibling of this property element, no text is generated.

Otherwise either the inherent value or the value given by the attribute value
send-value will be used, as described above.

send-type="none": This property element will not generate any code.

B The DTD of MRML

Here is the documented DTD of MRML. It has been derived from the DTD used by Viper
via a Perl script. We removed all attributes and tags which are Viper{speci�c extensions
to MRML and by added some highlighting of the comments:

<!--

Basic structure: Messages are sent as MRML texts. In order to make it easy for the
server to know who connects, each message is assigned the id of its session as an attribute.

Author of this �le: Wolfgang Mueller with lots of suggestions and
corrections from

David Squire, Arjen P. de Vries and Christoph Giess

-->

<!ELEMENT mrml (begin-transaction?,(

get-configuration

|configuration-description

|get-sessions

|session-list

|open-session

15

|rename-session

|close-session

|delete-session

|get-collections

|collection-list

|get-algorithms

|algorithm-list

|get-property-sheet

|property-sheet

|configure-session

|query-step

|query-result

|user-data

|error

)?,

end-transaction?)

>

<!ATTLIST mrml

session-id ID #IMPLIED

transaction-id ID #IMPLIED

>

<!--

Request: get-configuration

This is the message an MRML client sends to the server on connection. The message
get-configuration gives information about the basic server con�guration.

-->

<!ELEMENT get-configuration EMPTY

>

<!--

Response: configuration-description

The get-configuration message is anwered by a message which is supposed to hold
a description about anything which is nonstandard MRML.

-->

16

<!ELEMENT configuration-description EMPTY

>

<!--

Request: get-sessions

The get-sessions message permits the user to request exsisting sessions for a given
user. It is sent by the client directly after after the configuration-description has been
delivered, and prior to any other activity.

Authenti�cation happens before any other activity to give the server the possibility to
customise any other information sent to the user. For example, it might be sensible to
send di�erent property sheets to di�erent classes of users, or to render some parts of the
database only visible to the own work group.

-->

<!ELEMENT get-sessions EMPTY

>

<!ATTLIST get-sessions

user-name CDATA #REQUIRED

password CDATA "guest"

>

<!--

Response: session-list

A session is described by its session-id. We also send over a more human-readable
name

-->

<!ELEMENT session-list (session+)

>

<!ELEMENT session EMPTY

>

<!ATTLIST session

session-id CDATA #REQUIRED

session-name CDATA "Default session"

>

<!--

Request: get-collections

gets a list of collections on the server.

-->

17

<!ELEMENT get-collections EMPTY

>

<!--

Request: collection-list

a list of collections on the server.
a collection is described by a list of the of the query paradigms which can be used for

querying it, as well as an ID and its human-readable name.
This means, you do not have to index all collections using all the methods you want to

propose to the server.

-->

<!ELEMENT collection-list (collection*)

>

<!ELEMENT collection (query-paradigm-list?)

>

<!ATTLIST collection

collection-id CDATA #REQUIRED

collection-name CDATA #REQUIRED

>

<!--

Tag: query-paradigm

arises both in algorithms and collections: this describes the kind of query which can be
performed with this algorithm/collection

-->

<!ELEMENT query-paradigm-list (query-paradigm*)

>

<!ELEMENT query-paradigm EMPTY

>

<!ATTLIST query-paradigm

query-paradigm-id CDATA #REQUIRED

>

<!--

Request: get-algorithms

gets a list of algorithms usable for one collection

-->

18

<!ELEMENT get-algorithms EMPTY

>

<!ATTLIST get-algorithms

collection-id CDATA #IMPLIED

query-paradigm-id CDATA #IMPLIED

>

<!--

Response: algorithm-list

returns a list of algorithms for a given collection on the server

-->

<!ELEMENT algorithm-list (algorithm*)

>

<!--

Tag: algorithm

An algorithm can contain other algorithms, optionally a property sheet, optionally a query
paradigm list optionally an "allows-children" speci�cation

-->

<!ELEMENT algorithm (algorithm*,property-sheet?,query-paradigm-list?,allows-children?)

>

<!ATTLIST algorithm

algorithm-id CDATA #REQUIRED

collectiom-id CDATA #REQUIRED

algorithm-name CDATA #REQUIRED

algorithm-id ID #REQUIRED

algorithm-type CDATA "adefault"

collection-id CDATA "cdefault"

>

<!--

Tag: allows-children

This tag speci�es for an algorithm what kind of algorithms can be children of this algorithm.
no speci�cation) allows no children.

-->

<!ELEMENT allows-children (query-paradigm-list?)

>

<!--

19

Request: get-property-sheet

get the property sheet for an algorithm

-->

<!ELEMENT get-property-sheet EMPTY

>

<!ATTLIST get-property-sheet

algorithm-id ID #REQUIRED

>

<!--

Request: begin-transaction

begins a transaction

-->

<!ATTLIST begin-transaction

transaction-id ID #REQUIRED

>

<!--

Request: end-transaction

ends a transaction

-->

<!ATTLIST end-transaction

transaction-id ID #REQUIRED

>

<!--

Request: configure-session

con�gures the session by giving an algorithm

-->

<!ELEMENT configure-session (algorithm)

>

<!--

Tag: property-sheet

Basic idea: send a property sheet to-
gether with a speci�cation
what should be the XML out-
put coming back. Useful for
con�guring your database.

20

-->

<!ELEMENT property-sheet (property-sheet)*

>

<!ATTLIST property-sheet

property-sheet-id ID #REQUIRED

property-sheet-type (

multi-set

|subset

|set-element

|boolean

|numeric

|textual

|panel

|clone

|reference) #REQUIRED

caption CDATA #IMPLIED

visibility (popup|visible|invisible) "visible"

send-type (element

| attribute

| attribute-name

| attribute-value

| children

| none) #REQUIRED

send-name CDATA #IMPLIED

send-value CDATA #IMPLIED

min-subset-size CDATA #IMPLIED

max-subset-size CDATA #IMPLIED

from CDATA #IMPLIED

step CDATA #IMPLIED

to CDATA #IMPLIED

auto-id (yes|no) #IMPLIED

auto-id-name CDATA "id"

defaultstate CDATA #IMPLIED

>

<!--

Tag: algorithm

An algorithm will be either an empty element with attributes (add some at your will, it
will talk with your server anyway, and this is the server which sent the property sheet), or
a tree of algorithms.

What is the use of this? Think of con�guring meta queries. Together with properties
you get a powerful tool.

-->

21

<!ELEMENT algorithm (algorithm*)

>

<!--

Beginning and renaming sessions
We want to give the user the possibility to save the current state into "sessions". This

might be useful in the case that a user has several classes of goals which s/he knows in
advance.

The user can request a new session. S/he can also request a name change for a session.
Ending sessions is implicit: we cannot a�ord being dependent on the user ending

his/her session in a "nice" way, so we do not tempt programmers to do so

-->

<!--

Interface side

-->

<!--

send the desired feedback method together with a name for the session

-->

<!ELEMENT open-session EMPTY

>

<!ATTLIST open-session

user-name CDATA #REQUIRED

password CDATA #IMPLIED

session-id CDATA #IMPLIED

session-name CDATA #IMPLIED

>

<!ELEMENT rename-session EMPTY

>

<!ATTLIST rename-session

session-id CDATA #IMPLIED

session-name CDATA #IMPLIED

>

<!ELEMENT delete-session EMPTY

>

<!ATTLIST delete-session

session-id CDATA #REQUIRED

>

22

<!ELEMENT close-session EMPTY

>

<!ATTLIST close-session

session-id CDATA #REQUIRED

>

<!ELEMENT acknowledge-session-op EMPTY

>

<!ATTLIST acknowledge-session-op

session-id CDATA #REQUIRED

>

<!--

Simple user commands (for logging purposes)
(like e.g. back or forward in the command history) (at present the only commands)

-->

<!ELEMENT user-data EMPTY

>

<!ATTLIST user-data

command (history-backward|history-forward) "backward"

steps CDATA #IMPLIED

>

<!--

Request: query-step

At present we provide only query by example, and search for random images (done, if
one sends an empty query-step tag)

-->

<!ELEMENT query-step (user-relevance-element-list?)

>

<!ATTLIST query-step

query-step-id CDATA #REQUIRED

result-size CDATA #IMPLIED

result-cutoff CDATA #IMPLIED

query-type (query|at-random) "query"

algorithm-id CDATA #IMPLIED

>

<!--

23

Tag: user-relevance-element-list

List of URLs with user given relevances Our way of specifying a QBE for images.
relevances vary from 0 to 1

-->

<!ELEMENT user-relevance-element-list (user-relevance-element+)

>

<!ELEMENT user-relevance-element EMPTY

>

<!ATTLIST user-relevance-element

user-relevance CDATA #REQUIRED

image-location CDATA #REQUIRED

>

<!--

Response: query-result

each result image can be accompanied by the user given relevance, as well as the simi-
larity calculated by the program, based on the feature space.

calculated similarities vary from 0 to 1

-->

<!ELEMENT query-result (query-resultelement-list?,query-result*)

>

<!ELEMENT query-result-element-list (query-resultelement+)

>

<!ELEMENT query-result-element EMPTY

>

<!ATTLIST query-result-element

calculated-similarity CDATA #REQUIRED

thumbnail-location CDATA #REQUIRED

image-location CDATA #REQUIRED

>

<!--

Error messages.

-->

<!ELEMENT error EMPTY

>

<!ATTLIST error

message CDATA #REQUIRED

>

24

