
Hunting moving targets: an extension to Bayesian methods in

multimedia databases

Wolfgang M�uller, David McG. Squire, Henning M�uller and Thierry Pun

Computer Vision Group, University of Geneva

24 Rue du G�en�eral Dufour, CH-1211 Gen�eve 4, Switzerland

ABSTRACT

It has been widely recognised that the di�erence between the level of abstraction of the formulation of a query (by
example) and that of the desired result (usually an image with certain semantics) calls for the use of learning methods
that try to bridge this gap. Cox et al. have proposed a Bayesian method to learn the user's preferences during each
query.

Cox et al.'s system, PicHunter,1 is designed for optimal performance when the user is searching for a �xed target
image. The performance of the system was evaluated using target testing, which ranks systems according to the
number of interaction steps required to �nd the target, leading to simple, easily reproducible experiments.

There are some aspects of image retrieval, however, which are not captured by this measure. In particular, the
possibility of query drift (i.e. a moving target) is completely ignored. The algorithm proposed by Cox et al. does
not cope well with a change of target at a late query stage, because it is assumed that user feedback is noisy, but
consistent.

In the case of a moving target, however, the feedback is noisy and inconsistent with earlier feedback.

In this paper we propose an enhanced Bayesian scheme which selectively forgets inconsistent user feedback, thus
enabling both the program and the user to \change their minds". The e�ectiveness of this scheme is demonstrated
in moving target tests on a database of heterogeneous real-world images.

Keywords: relevance feedback, query drift, target testing, Bayesian methods, user modelling

1. INTRODUCTION

With large unannotated image and video collections becoming more and more common, there arises the need for
tools which perform content based image retrieval. Much attention has been given to systems supporting the user
in �nding images similar to one example, enabling the user to give feedback.2, 3 Usually the problem of �nding a
useful seed has been ignored. Most of the systems give the user the possibility to get random choices of images in
the database. This is suitable for testing query methods, but clearly insu�cient, if one actually wants to use the
database for real queries. What one needs here is a process, which provides a suitable seed.

However, little attention has been paid to systems which support the browsing process,1, 4 i.e. a process in which
the user moves freely through feature space, by expressing his or her preferences. To our knowledge these systems
were specialised browsers without nearest-neighbour capabilites. This paper focuses on the browsing process and
puts it in context with query by example, showing that these capabilities are complementary.

The method for measuring performance of browsing systems established in1 is the target test: the user is shown
an image, which he or she then has to �nd in the database. The number of interaction steps is recorded. A good
system minimises the number of interaction steps necessary for �nding an image.

One point of criticism against the target testing method is its failure to capture the often gradual, sometimes
sudden, changing of mind users experience during longer query sessions. In this paper we describe TrackingViper , a
system which takes the possibility of query drift into account. Along with it we propose an extension of the target

fWolfgang.MuellerjDavid.SquirejHenning.MuellerjThierry.Pung@cui.unige.ch
tel. ++41 22 705 7628, fax. ++41 22 705 7780

test which permits the measurement of the performance of systems which try adaptively to help the user in the
browsing process.

In the following section 2 we describe the Bayesian method used by PicHunter as well as our modi�cations to its
model, which rely on a model of user feedback inconsistency: if the user gives feedback which is strongly inconsistent
with earlier judgements, this can be caused by a change in what he or she is looking for. Di�erent models will be
described.

It follows section 3 which establishes a new benchmark for the performance of image databases: the moving target
test. It is put in context with other performance measures.

2. BAYESIAN METHODS FOR BROWSING QUERIES

2.1. PicHunter: a static target searching system

Information retrieval systems usually try to �nd (more or less explicitly) documents � which have a high proba-
bility of being wanted by the user given the query. Here the query can be text as well as an example. In most
systems the user is given the chance to improve the result by giving feedback, thus looking for � which optimise
p(� wanted by the userjquery, feedback). This paradigm has been largely adopted by the image database community.
In image databases, the situation however is quite di�erent, due to the inability of the user to formulate pictorial
queries as precisely as a textual or a SQL query. In many cases the goal will be to �nd one or more interesting
images in the collection, without being able to furnish a suitable seed for a query by example. This leads to the
browsing query case, in which an explicit query does not exist, and in which we look for images which optimise
p(� wanted by the userjfeedback over several steps). The main di�erence from the normal IR case is that relevance
feedback is not seen as an improvement to an already well-phrased query, but as a query language for a user who is
unable to formulate ad-hoc queries.

Cox et al. try to solve this rephrased query problem by maintaining a probability distribution which contains for
each document � of the database the probability that � is the target of the query, i.e. the goal the user has in mind
when starting the query. To this end the system, PicHunter, gives at each interactive step a small set of images, the
suggestion S, to the user. The user responds by giving some feedback F to the system. The update is done using
the classic Bayesian rule:

p(T = �jF; S) =
p(F jT = �; S)p(T = �; S)

p(F; S)
(1)

In this formula p(F jT = �; S) is the user model: it describes the expected feedback, if we know that the target is �
and the suggestion S had been given. p(T = �; S) is the prior knowledge of the target's whereabouts, and p(F; S)
(the probability that F is given at the same time that S is suggested) is a normalising factor. The suggestions S are
chosen to minimise the expected number of comparisons needed to �nd the target using an entropy argument. The
feedback given by the user is given by comparison, i.e. the user decides which of the suggested images are closer to
the target than other suggested images. Thus the elementary feedback a user can give is one comparison between
two images: we write

user (T : i; j) :, The user considers i closer than j to the target T (2)

User modelling in PicHunter is based on the assumption that one is in the possession of a distance metric d (i; j)
for images i and j, which captures the human \internal" similarity measure to such an extent that one can assume
that it is perfect except for blurring by \mistakes" of the user:

p(F jT) =
1

1 + e
d(T;j)�d(T;i)

�

(3)

where � is a free parameter which has to chosen before the process by the implementor. In the case of lim�!0 (3)
converges to

p(F jT) =

8><
>:
1 d (T; i) < d (T; j)

0:5 d (T; i) = d (T; j)

0 d (T; i) > d (T; j)

(4)

This limit case of no blurring shows two potential weaknesses of this method:

1. � obviously depends on the image collection as well as the intended users. More importantly, it depends also
on the metric employed for the search.

2. Once an image � is discarded from the set of potential targets (i.e. p(T = �) � 1) by \wrong" feedback, it is
di�cult for � to be reconsidered.

These two points are equally important for the moving target problem which we address in this paper.

2.2. TrackingViper : modelling the changing mind

2.2.1. Motivation

The shortcomings of the PicHunter can be summarised by saying that it would be desirable to take our uncertainty
regarding the user model into account, using stronger methods than blurring. This need is emphasised by another
observation: In the beginning of a real{world browsing query the user usually has a target in mind. During the
query, however, the user often changes his or her target as a function of what he or she thinks can be found in the
database.

One method for coping with this is to provide the user with an explicit means to express changes of mind.
However, this would place the burden on the user to decide clearly, if he or she changes his or her ideas about the
target or not, and how much these changes a�ect user feedback given in previous steps.

We propose here a framework which consists of weighting the di�erent comparisons according to the degree to
which they are trusted. Comparisons which are in less contradiction with others are more trusted.

Consider the simple case of a modi�ed Hi-Lo game (the Hi-Lo game is classic programming exercise for beginners:
let the user �nd a real number in a given interval). Consider �nding a number t in the interval between [0; 1]. One
person, A, asks B which one of the points x1; x2 is closer to t. If the B is good at arithmetics, there is no hesitation:
A has to choose x1 and x2 such, that they are equidistant from the midpoint. By doing this, A can expect to half
the set of points still to be considered. The problem will be reduced to either �nding a point in [0; 0:5) or (0:5; 1].
However, if you consider A and C, where C sometimes has little problems with addition subtraction and comparing
numbers, A will either employ the same tactics as PicHunter i.e. \blurring" and/or A will deliberately choose x1
and x2 so that \surprising" results can be detected.

This observation leads us to a tradeo�: a sequence of comparisons chosen so as to strictly minimise the number of
steps to be taken will each time halve the distribution, but it will not allow for the detection of inconsistencies except
at the moment where there are no more points to consider. A \no-surprises" sequence of comparisons, however, will
start at one end of the interval and consider every point.

2.2.2. A framework for the de�nition of inconsistent user behaviour

For our de�nition of inconsistence of user feedback, we regard it as convenient to express (1) rather as an intersection
of probabilistic sets. A probabilistic set over a set of items I , I, is a set of pairs (p; i) where p 2 [0; 1] denoting the
probability of an item that an i 2 I is in the set.

I := f(p; i)ji 2 I and p 2 [0; 1]g (5)

We de�ne now the intersection between two probabilistic sets I, J with weighting constant w (to be explained
below), using the function f as

\ (I;J ; w; f) := f(f(pI ; pJ ; w); i)j(pI ; i) 2 I and (pJ ; i) 2 J g (6)

We write the multiplication of the probability of each element in a probabilistic set I

� (�; I) := f(�p; i)j(p; i)) 2 Ig (7)

We can write the normalisation (in the probability distribution sense of the word) of a probabilistic set, as

Normalise (I) := �

1P

(p;i)2I p
; I

!
(8)

If the suggestion was S, the user feedback F and the knowledge prior to a learning step is described by the
probabilistic set I , the learning step (1) becomes

J = \ (I; f(p(T = X jS; F); X)jX 2 databaseg; 1;multiply) (9)

with multiply(a; b; c) = a � b � c.

We will call f(p(T = X jS; F); X)jX 2 databaseg the feedback set of F (and T):

Feedback (F; S; T) := f(p(T = X jS; F); X)jX 2 databaseg (10)

Thus we can regard the learning process as a sequence of intersections of probabilistic sets. The probabilities p
of the members (p; i) of the resulting sets represent a plausibility of i being the target. Accordingly we de�ne: a
weighted set of user feedback steps Fk with weighting constants wk , f(w1; F1); :::; (wN ; FN)g is consistent under a
plausibility predicate Pred (given the combination function f) i�

9(p; i) : Pred(p; i) and

0
@(p; i) 2 \

k2f1;:::;Ng

(Feedback (Fk ; Sk; T) ; wk ; f)

1
A (11)

i.e. there is at least one image in the intersection of the feedback sets which is considered to be plausible by the
predicate Pred. For short, we write Consistent (f(w1; F1); :::; (wN ; FN)g) i�f(w1; F1); :::; (wN ; FN)g is consistent.

The wk in equation (11) correspond to our \belief" into Feedback (Fk; Sk; T) as result of a useful comparison.
Our learning problem is thus to be augmented by the search for wk which make (wk ; Fk) consistent. If one wants to
view this in a more Bayesian style, wk modi�es the user model, depending on the belief in the comparisons. This
leaves us the choice of a function which �nds for the Fk proper wk. Furthermore, we have to choose a combination
function f and the user model.

First of all we want to emphasise the temporal component: we assume that more recent comparisons are more
credible than older ones. Without this assumption, our relations become symmetric, and we have no way of deciding
which comparison is to be weighted lower if two comparisons are inconsistent.

Knowing that computing time is limited, one possibility is to make each wk a function of the feedback given in
the m previous and m following steps (Fk�m; Fk�m+1; :::; Fk+m�1; Fk+m) for some small m. In this paper we take a
more rule based approach given by the following algorithm:

N is the number of feedback steps given so far.

1. i! N

2. wi !

(
1 Consistent (f(w1; F1); :::; (wi�1; Fi�1)g)

0 otherwhise

3. until (i = 1 or # fwkjk 2 fi; :::; Ng and wk = 0g) > # do i! i� 1 and goto 2

This leaves us with the choice of a suitable Pred, the choice of #, as well as the choice of a combination function
f . The Pred is a simple threshold comparison. In this paper we chose f(a; b; c) = multiply(a; b; c).

The user model was chosen as

p(F jT) =

(
1 d (T; i) � d (T; j)

0:1 d (T; i) > d (T; j)
(12)

Similar to the original papers about PicHunter, we estimated the expected entropy gain by sampling several
suggestions Si from the current distribution, and taking the Si which maximised the decrease of entropy in the
current distribution. In order to generate suggestions which enable inconsistent user feedback, we slightly favour S
which minimise

PN

k=1 wk, i.e. which force forgetting of user feedback.

2.2.3. The system

The tests in the present work were performed using Viper ,3 a system which uses techniques inspired by text retrieval
(inverted �les), on a very large quantised feature space. Viper obtains in Query-By-Example good Precision-Recall
in interactive time for databases of moderate size (O(10000) images). The features have proven to be highly selective,
and in relatively good accordance with human perception.

Viper 's features and scoring algorithms yield a distance measure which is not symmetric. This is in accordance
to psychophysical evidence, that human similarity perception is not symmetric.5 However, for use in the present
framework, asymmetry of the distance measure is undesirable. The distance measure is also required to ful�l the
triangle inequality. A symmetric distance matrix ful�lling these constraints to a suitable extent was built for the
experiments.

Viper is designed for exibility. Our present system allows the use of browsing queries and nearest neighbour
queries in parallel. This capability was used for some of our tests.

3. EVALUATION

The normal QBE process corresponds to deep exploration of the feature space in the immediate neighbourhood of the
example. The relevance feedback usefully leads to a deformation of the feature space in order to better capture the
user's view of similarity, and to capture the di�erences between the user's example and the user's information need.
How much the feature space chosen for a program corresponds to the average information need of the unexperienced
user can be measured in precision{recall plots and derived measures, as well as using other methods using user
relevance data.

Target testing, however, captures the mobility of the user within the feature space. He is supposed to move in an
autonomous fashion in feature space, thus �nding an image whose characteristics are not known to the database. In
this target testing and query by example are testing two complementary properties which should be present in every
CBIRS: Browsing query systems help in query formulation, while good QBE systems have a good query performance.

In most real cases the user will be rather interested in approaching the target using a browsing query mechanism.
After a certain point however, he or she will pro�t from a good and quick overview over the images which are inside
a certain region of the feature space which can be obtained using a nearest neighbour query.

The weakness of the target testing method, however, is its focus on one target image. This generates mainly two
problems:

� arguably, the user will react in a di�erent way, if knowing the whole image to be found, than if he or she knows
only a semantic category the wanted image falls in

� equally arguably, a real user will change his or her mind during the browsing process. Giving a target image
to the test person is like telling the buyer which jeans to buy before sending him or her into the shopping mall
and guaranteeing that he or she will �nd it in one of the businesses in the mall.

We consider that giving a target image to the user is the one method to verify that di�erent results for di�erent
systems are not only due to the fact that the test persons are more or less demanding. However, we suggest to model
the inevitable change of mind by giving the user a sequence of targets he or she has to visit. This simulates the
moves of the target and the ability of the system to follow moves and to detect abrupt changes of the target. This
method of testing we call moving target test.

In the experiments described in the following subsections we give some moving target tests, for \simple" images
taken from a complex real{world database containing 2500 images (TSR2500) provided by T�el�evision Suisse Ro-
mande, the broadcasting corporation of the French speaking part of Switzerland. Before the presentation of these
results we give a short summary of simulations which capture the \best case".

3.1. Simulation

We simulate a user who uses exactly the same distance metric as the program. This user tries to �nd a sequence of
four images in the database. The number of tries for each retrieval is counted.

Of course, these simulations do not prove anything about real users. However, they show, that the requirements
for the use of this method are met by the distance measurement, combination function and algorithm. If the user
does not make any \mistakes", he or she will be able to �nd a sequence of images. Because of the perfection of the
simulated user the simulations should provide an upper limit for the performance of this method.

We did two kinds of simulations:

1. a simulation, in which the simulated user gave at each step negative feedback for all images but the best match
to the target, giving positive feedback for the best match. Here the simulated user had to see 38 images on
average for reaching each query target.

2. a simulation in which it gave negative feedback to the worst match and positive feedback to the best match.
Here the simulated user had to see 75 images on average for reaching each query target.

Simulations of a TrackingViper without forgetting (this is close to PicHunter with � = 0) suggest that without
forgetting feedback, performance seriously degrades after �nding the �rst target.

3.2. User Experiments

For moving target tests we chose four scenarios:

Viper with and without feedback memory for previous feedback steps: As a reference, Viper was used with a
random seed to �nd the targets of the target sequence. 20 images were visible at each feedback step.

TrackingViper : TrackingViper memorised the last 10 feedback steps and cumulated the knowledge gained from
older feedback in an additional eleventh feedback set. # was ignored. At each step 5 images were shown.

Split screen: In addition to the suggestions (5 images) provided by TrackingViper 15 images from a Viper nearest
neighbour query were shown. Using this, the user had the opportunity to explore the feature space given by
the feedback images chosen by the user. The fact that 15 images were shown from a nearest neighbour query,
and only 5 from a suggestion, is not a contradiction. The choice of a suggestion takes time linear to its size,
while a nearest neighbour query scales much more favourably.

As a general modi�cation to the original PicHunter papers, in our experiments, the user had explicitely to give
both positive and negative feedback, thus leaving space for indi�erence in case of uncertainty of the user.

Choice of test images: Preliminary experiments had shown that the TSR2500 database contains many very
small clusters of images, which are so semantically di�erent from each other that it is di�cult for the user to judge
image similarity (Geman et al.6 write in this context of \virtually random" comparison outcomes). For the test in
this paper we chose four images from large clusters in the database: banknotes, trademarks and ags, sunsets (very
dark background), airplanes (mostly sky).

Test persons two test persons with image processing background performed multiple experiments with Track-
ingViper and modi�ed versions. As it will be described and discussed below we had learning e�ects during some of
the tests.

Viper without feedback memory The user was started from a random set of 20 images, giving feedback in order
to move in the direction of the next target. Here the user was able to give feedback at each step. This feedback was
taken into account for the calculation of a new set of 20 images resembling the given feedback and then forgotten.
420� 100 images had to be seen by the user for �nding all images in each target sequence. The details can be found
in table 1.

Image Test 1 Test 2 Test 3 Test 4 Test 5

$1 bill 80 60 120 100 100
Honda 40 80 80 140 140

Sun 60 120 120 260 120
747 140 60 80 100 100

Sum: 320 320 400 600 460

Table 1. This table summarises the outcomes of 5 moving target tests (Test 1 through 5) with Viper without
feedback memory. The test consisted in �nding a one dollar bill, a Honda logo, an image of the sun, and an image
of a ying Boeing 747 in this sequence. Each time the user started at a di�erent random state. In each cell of the
table the number of images seen to �nd the next target is noted (e.g. in the �rst test, the user needed to see 140
images, to �nd the 747 after having found the sun image.) The complete number of images seen in each complete
moving target test is summed up in the last column.

Viper with feedback memory Here the user also started with a random set of 20 images, giving feedback in
order to move in direction of the next target. In contrast to the method described in the paragraph above, the user
was able to cumulate feedback over several steps.

We did two runs of �ve tests with the same expert user. We observed, that the user learned quickly, how to
optimise his target testing performance when using Viper . He was able to reduce the number of images seen before
�nding the last target by approximately a third.

On �rst use by the user, 420�140 images had to be seen by the user for �nding all images in each target sequence.
The details can be found in table 2.

Image Test 1 Test 2 Test 3 Test 4 Test 5

$1 bill 120 100 140 100 100
Honda 80 80 60 220 80

Sun 80 40 440 80 40
747 20 120 40 80 100

Sum: 300 340 680 480 320

Table 2. This table summarises the outcomes of 5 moving target tests (Test 1 through 5) with Viper with feedback
memory. The test task was exactly the same as in table 1.

After having gained some experience, only 260� 40 images had to be seen by the user for �nding all images in
each target sequence. The details can be found in table 3.

Image Test 1 Test 2 Test 3 Test 4 Test 5

$1 bill 100 120 100 100 60
Honda 100 40 60 80 80

Sun 80 80 20 60 40
747 40 40 40 40 40

Sum: 320 280 220 280 220

Table 3. This table summarises the outcomes of 5 moving target tests (Test 1 through 5) with Viper with feedback
memory. The test task was the same as in table 1.

TrackingViper Five experiments with an identical target sequence were performed, starting at di�erent starting
points. The user needed 65 � 11 iterations for performing the task; the user therefore scanned on average 82
images in 16.5 iterations before �nding a target of the target sequence. This is approximately 15 times better than
chance. While these results are quite satisfactory (better than to Viper before learning) and surprisingly close to the

simulation results, the user found his situation quite di�cult: images chosen by the system are not necessarily close
to the images marked positive by the user. Often this is desired. Sometimes, however, the user has the impression
that his or her feedback had been \misunderstood".

320 � 55 images had to be seen by the user for �nding all images in each target sequence. The details can be
found in table 4. Within the experiment the performance, attained by the test user using TrackingViper did not
increase.

Image Test 1 Test 2 Test 3 Test 4 Test 5

$1 bill 110 85 75 130 85
Honda 105 75 40 135 105

Sun 100 25 85 50 105
747 45 45 140 80 50

Sum: 360 230 340 395 310

Table 4. This table summarises the outcomes of 5 moving target tests (Test 1 through 5) with TrackingViper . The
test task was exactly the same as in table 1.

Surprisingly, for the chosen queries, the simulation results are only slightly better than those of a skilled human
user. This might be explained by the fact that a human user can consciously induce small contradictions, if he or
she does not like the current suggestion. The system then will open up the distribution by forgetting parts of the
old feedback.

Split screen TrackingViper/Viper This method was a reaction to the subjective impressions of our test user
when performing TrackingViper queries. At each iteration 20 images were shown to the user. 5 of them were a
suggestion by TrackingViper , 15 the result of a nearest neighbour query, which used the feedback given in the last
step. As one can see, these results are clearly the best of our tests.

Also the subjective impression when using this version was satisfactory: the TrackingViper part provide the user
with good seeds which in the present simple setting were quickly usable for successful nearest neighbour queries.

On average, only 225� 30 images had to be seen by the user for �nding all images in each target sequence. The
details can be found in table 5.

Image Test 1 Test 2 Test 3 Test 4 Test 5

$1 bill 80 20 60 140 100
Honda 40 20 60 60 40

Sun 60 40 20 20 20
747 60 100 60 40 80

Sum: 240 180 200 260 240

Table 5. This table summarises the outcomes of 5 moving target tests (Test 1 through 5) with TrackingViper . The
test task was exactly the same as in table 1. These results are the best over all tested methods.

4. CONCLUSION

In this paper we presented an approach to tracking query drifts in target searches. In target searches the user tries
to �nd an item (target) in the database starting from a small random sample.

The approach was implemented in the system TrackingViper . In order to measure the performance of the system
we made user experiments with expert users. They used the system to �nd a number of targets in a �xed sequence.
Targets were simple images taken from a dataset of 2500 images. Future tests will involve random targets, as well
as non-expert users.

Our user experiments gave two main results:

Figure 1. The last step, when trying to �nd the second of our four test images for the split screen
(Viper/TrackingViper). The �rst line shows images suggested by TrackingViper , the next lines show the results
of a nearest neighbour query on the feedback given in the last step. In the third row on second position, you can see
a part of the target image.

1. TrackingViper enables the user to move in feature space by giving feedback. TrackingViper is able to follow
changes of the user's wishes by forgetting parts of the user feedback deemed to be inconsistent with newer
user feedback. Moving to a new target from and old, found target seems not to be more costly than explicitly
starting a new query.

2. A combined system of a target searching system and a nearest neighbour QBE system was preferred by the
user and performed best in our test. It enables the user to choose quickly between browsing movement in the
feature space and intensifying his or her search in some point of the feature space.

Our results suggest that one should not see target searching systems as a stand-alone method, but rather as a
convenient, e�cient way of solving the problem of �nding a suitable seed for nearest neighbour (QBE) queries.

In the future we want to explore more of the parameters given in section 2.2. At present we have the subjective
impression that our system forgets too late, and sometimes too completely. We are especially interested in a method
which does not have any parameters which have to be chosen before the query process. Furthermore, we would like to
adapt our target searching methods so that they scale better with the database size than does the present explicitly
maintained probability distribution. The results given in section 3.2 for \Viper with feedback memory" encourage
this approach.

REFERENCES

1. I. J. Cox, M. L. Miller, S. M. Omohundro, and P. N. Yianilos, \Target testing and the PicHunter Bayesian multi-
media retrieval system," in Advances in Digital Libraries (ADL'96), pp. 66{75, (Library of Congress, Washington,
D. C.), May 13{15 1996.

2. T. Minka, \An image database browser that learns from user interaction," Master's thesis, MIT Media Laboratory,
20 Ames St., Cambridge, MA 02139, 1996.

3. D. M. Squire, W. M�uller, H. M�uller, and J. Raki, \Content-based query of image databases, inspirations from text
retrieval: inverted �les, frequency-based weights and relevance feedback," in The 10th Scandinavian Conference
on Image Analysis (SCIA'99), (Kangerlussuaq, Greenland), June 7{11 1999.

4. J. Vendrig, M. Worring, and A. W. M. Smeulders, \Filter image browsing: Exploiting interaction in image
retrieval," in Third International Conference On Visual Information Systems (VISUAL'99), D. P. Huijsmans
and A. W. M. Smeulders, eds., no. 1614 in Lecture Notes in Computer Science, pp. 147{154, Springer-Verlag,
(Amsterdam, The Netherlands), June 2{4 1999.

5. A. Tversky, \Features of similarity," Psychological Review 84, pp. 327{352, July 1977.

6. D. Geman and R. Moquet, \A stochastic feedback model for image retrieval," technical report, Ecole Polytech-
nique, 91128 Palaiseau Cedex, France, 1999.

7. T. V. Papathomas, T. E. Conway, I. J. Cox, J. Ghosn, M. L. Miller, T. P. Minka, , and P. N. Yianilos, \Psy-
chophysical studies of the performance of an image database retrieval system," in Human Vision and Electronic
Imaging III, B. E. Rogowitz and T. N. Pappas, eds., vol. 3299 of SPIE Proceedings, pp. 591{602, July 1998.

8. I. J. Cox, M. L. Miller, T. P. Minka, and P. N. Yianilos, \An optimized interaction strategy for bayesian relevance
feedback," in Proceedings of the 1998 IEEE Conference on Computer Vision and Pattern Recognition (CVPR'98),
pp. 553{558, (Santa Barbara, California, USA), June 1998.

9. D. M. Squire, W. M�uller, and H. M�uller, \Relevance feedback and term weighting schemes for content-based image
retrieval," in Third International Conference On Visual Information Systems (VISUAL'99), D. P. Huijsmans
and A. W. M. Smeulders, eds., no. 1614 in Lecture Notes in Computer Science, pp. 549{556, Springer-Verlag,
(Amsterdam, The Netherlands), June 2{4 1999.

