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Abstract

In this paper we report the application of techniques inspired by text retrieval
research to the content-based query of image databases. In particular, we show how
the use of an inverted �le data structure permits the use of a feature space of O(104)
dimensions, by restricting search to the subspace spanned by the features present in
the query. A suitably sparse set of colour and texture features is proposed. A scheme
based on the frequency of occurrence of features in both individual images and in the
whole collection provides a means of weighting possibly incommensurate features in a
compatible manner, and naturally extends to incorporate relevance feedback queries.
The use of relevance feedback is shown consistently to improve system performance,
as measured by precision and recall.

1 Introduction

In recent years, the use of digital image collections has become common, both on the
world wide web and in the preparation of both electronic and paper publications. The
need for tools to manage this rapidly-increasing quantity of visual data is greater than
ever. Speci�cally, there is great interest in systems which allow users to query image
databases. The attachment of text labels to images is inadequate, since identical images
can be described in di�erent ways, and controlled vocabulary indexing is now considered
insu�cient even in text retrieval systems. Consequently, there is great interest in Content-
Based Image Retrieval Systems (CBIRSs).

The content-based retrieval of text documents has been studied for more than forty
years. Many of the insights and techniques of text retrieval have been ignored by image
retrieval researchers, or reinvented without the bene�t of knowledge of the prior work.
Relevance Feedback was introduced for improving text retrieval performance more than
thirty years ago, and its utility is long-established [27]. Similarly, a great variety of term-
weighting approaches have been investigated, both empirically and theoretically [9, 26].
Means of system evaluation have also been thoroughly studied [25], yet Precision and
Recall [25, 35], the usual performance measures, are ignored by many researchers.

Text retrieval systems usually treat each possible term (i.e. word) as a dimension of
the search space. Consequently, spaces with O(104) dimensions are typical. It has thus
been necessary to develop techniques for e�cient search in such spaces, which is clearly
beyond the scope of standard spatial indexing techniques. The key realization is that in
such systems both queries and stored objects are sparse: they have only a small subset
(O(102)) of all possible attributes. This is not the same as having a numerical value of
zero for many attributes: a value of zero for numerical colour feature contains information
about image appearance and must be evaluated in the processing of a query; the absence
of a feature does not. The search is thus restricted to the subspace spanned by the terms of
the query. The data structure which makes such a subspace search e�cient is the Inverted
File.

Conversely, considerable e�ort has been devoted by image retrieval researchers to the
search for compact image representations (choosing the \right" features), and to the use
of techniques such as factor analysis [24] or self-organizing maps [11] to reduce the feature
space dimensionality, so that search can be performed using techniques such as k-d trees
and R-trees [40].

In this paper we present an image retrieval system which uses an inverted �le, with
more than 80000 possible features per image. A typical image contains O(103) features.
A feature weighting scheme based on the frequencies of features both in the query image
and also in the entire collection, commonly used in text retrieval, is employed. A relevance
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feedback scheme is also used. Evaluation using precision and recall demonstrates a clear
improvement over a previously-reported system using a smaller feature set and nearest-
neighbour search.

2 Related Work

The aim of a CBIRS is to retrieve images from a database based on their similarity to
a query image or sketch [10, 44]. It is acknowledged that the general computer vision
problem remains unsolved: semantic retrieval is still impossible. Some attempt to avoid
by restricting attention to images from restricted domains, such as industrial trademarks
[13] or marine animals [19]. Others tackle the general problem: low-level features are
extracted from the images, and an attempt is made to capture image similarity using
some function of these features. Object recognition is not attempted.

2.1 Features

2.1.1 Colour

By far the most commonly used feature is colour (for example, [13, 20, 32]). Often only
the global colour properties of image are used. These usually computed in a colour space
thought to correspond to human perception of colour di�erences (e.g. HSV [32, 37] or CIE
[30]). The most commonly used representation of these properties is the colour histogram
[10, 37]. Histogram intersection, which de�nes the similarity between two histograms as
the (normalized) number of pixels in common for each pair of bins, is the usual measure
of the distance between colour representations. A disadvantage of this measure is that it
takes no account of the perceptual similarity between bins [37]. Measures exist which use
a matrix of bin similarity coe�cients [20], but the choice of coe�cients is not obvious, and
the cost is quadratic.

2.1.2 Texture

Many systems use texture to improve image characterization (for example [17, 18, 21]).
There is a great variety of texture features available to system designers: hierarchies
of Gabor �lters [16]; the Wold features [15] used in MIT's Photobook system [22]; the
coarseness, contrast, and directionality features used in IBM's QBIC [20]; wavelet-based
decompositions [43]; and many more. When such features are global, they share the
drawbacks of the global colour features discussed above.

2.1.3 Shape

The third class of features that appear frequently in current CBIRSs is based on shape.
These features are again generally global: each image is assumed to contain a single shape.
This restriction mean that shape features are most easily applied to images drawn from
restricted domains. A good example is modal matching, a deformation-based method,
which has been applied to isolated �sh, rabbits and machine tools [29]. Other shape-based
approaches include multi-scale representation of curves [1]; histograms of edge directions,
which have been applied to trademarks [13]; and matching to templates of shape compo-
nents such as corners, line segments or circular arcs [4].
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2.1.4 Local features

Numerous researchers have recognized that global features are inadequate for many image
retrieval tasks. Users are often interested in the spatial layout of the colours, textures and
shapes in an image, and may be interested only in certain objects. Some have addressed
this problem by seeking features which retain spatial information as well as other image
properties, such as wavelet decompositions [38, 44]. Wavelet decompositions are usually
extremely vulnerable to small shifts of objects in the image. An alternative approach
to extracting local information is to segment the image into regions, and then extract
features of those regions [2, 7, 17, 32]. Features such as color and texture are extracted for
each region, as well as spatial properties such as size, location and relationships to other
regions. This approach turns the image retrieval problem into the non-trivial problem of
labeled graph matching.

2.2 Similarity

CBIRSs aim to return images which are similar to an example image, sketch or collection of
regions. Remarkably, the meaning of \similarity" in this context is rarely addressed. Those
who do address it discover its di�culty, e.g. \the results of the subjective test indicated
that human judgments of shape similarity noticeably di�er" [19, p. 38]. Similarity between
images is typically de�ned using the distance between image points in a multidimensional
feature space, as given by some metric: images close to the query are \similar" to the
query. The aim of such systems, however, is to return images that are similar to the
query according to the user's perception. The fact that these two notions of similarity
may be very di�erent is rarely discussed. It is often implied that if one chooses the \right"
features (an appropriate colour space [30, 37], texture features \corresponding to human
perception" [15]), then proximity in feature spacemust correspond to perceptual similarity.

There are several reasons to doubt this, the most fundamental being the metric as-
sumption. There is psychophysical evidence that human similarity judgments do not obey
the requirements of a metric. Speci�cally: \[Self-identity] is somewhat problematic, sym-
metry is apparently false, and the triangle inequality is hardly compelling" [36, p. 329].
For image retrieval, the lack of symmetry is the most important issue. In essence, the
features which are signi�cant in computing similarity depend on which of a pair of items
is the query: the variant is more similar to the prototype than vice versa. There have
been some preliminary attempts to apply Tversky's set theoretic similarity functions to
CBIRSs [28], but the psychophysical literature on similarity seems to have been largely
ignored by CBIRS researchers.

Some authors have addressed the fact that feature space distance is not necessarily
equivalent to perceptual similarity. Self-organizing maps have been used to cluster tex-
ture features according to class labels provided by human users [16]. Distance Learning
Networks have been used to attempt to learn a mapping from feature space to \perceptual
similarity space" using human similarity judgment data [33].

3 Viper System Overview

Viper , inspired by text retrieval systems, uses a very large number of simple features.1

The present version employs both local and global image colour and spatial frequency
features, extracted at several scales, and their frequency statistics in both images and the

1Visual Information Processing for Enhanced Retrieval. Web page: http://cuiwww.unige.ch/~viper/
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whole collection. The intention is to make available to the system low-level features which
correspond (roughly) to those present in the human vision system.

The fundamental di�erence between traditional computer vision and image database
applications is that there is a human \in the loop". The system is provided with low-level
features, and interaction with the user via relevance judgments allows a combination of
these features to be discovered which corresponds to the user's desires. In e�ect, a simple
image classi�er is learnt \on the y", according to the user's feedback.

More than 80000 features are available to the system, such as the mode colour of
various regions, or the quantized average energies of the outputs of Gabor �lters at a
various orientations and scales. Each image has O(103) such features, the mapping from
features to images being stored in an inverted �le.

3.1 Inverted Files

Inverted �les are the most common data structure used in text retrieval. An inverted
�le contains an entry for every possible feature (term) which consists of a list of the
images (documents) which contain that feature, the frequency of occurrence of that feature
in the collection, and possibly the frequency of that feature in each image. The text
retrieval community has developed techniques for building and searching inverted �les
very e�ciently [41].

Restricting the search to the subspace of the query, coupled with an appropriate weight-
ing scheme, results in asymmetric similarity measures, in accordance with the psychophys-
ical data discussed in x2.2.

3.2 Colour Features

It is desirable that the colour space used in an image retrieval system should be \percep-
tually" uniform, meaning that small changes in the colour coordinates should correspond
to small perceptual di�erences. The RGB space does not have this property. The HSV
colour space o�ers improved perceptual uniformity, and is easier to compute and invert
than systems such as CIE-LUV or CIE-LAB [32].

Viper uses a palette of 166 colours, derived by uniformly quantizing the cylindrical
HSV colour space into 18 hues, 3 saturations, and 3 values. These are augmented by 4
grey levels. This choice of quantization means that more tolerance is given to changes in
saturation and value, which is desirable since these channels can be e�ected by lighting
conditions and viewpoint.

Two sets of features are then extracted from the quantized HSV image. The �rst is
equivalent to a conventional colour histogram, with the variation that bins containing zero
pixels are discarded. There are thus 166 possible colour histogram features, of which most
images contain only about 40.

The second class of features represent local colour properties of the image. The image
is divided into square blocks at four scales, ranging from 16 � 16 through to 128 � 128.
The mode colour is calculated for each block. The occurrence of of a given color in a
particular block is treated as a binary feature. For our 256 � 256 images there are thus
56440 possible colour block features, of which each image has 340.

3.3 Texture Features

Two dimensional Gabor �lters have frequently been proposed as a framework for describing
and understanding the orientation- and frequency-selective properties of neurons in the
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visual cortex [6], and banks of Gabor �lters have often been applied to texture classi�cation
and segmentation [14, 39], as well as more general vision tasks [3, 12, 16]. We employ a
bank of real, circularly symmetric Gabor �lters, de�ned in the spatial domain by

fmn(x; y) = 1
2��2

m

e
�

x
2
+y

2

2�2m cos(2�(u0mx cos �n (1)

+u0my sin �n));

where m indexes the scales of the �lters, and n their orientations. The centre frequency
of the �lter is speci�ed by u0m . The half peak radial bandwidth is given by

Br = log2

 
2��mu0m + (2 ln 2)1=2

2��mu0m � (2 ln 2)1=2

!
(2)

(after [12]). Br is chosen to be 1 (i.e. a bandwidth of one octave), which then allows us
to compute �m:

�m =
3(2 ln 2)1=2

2�u0m
: (3)

The highest centre frequency is chosen as u01 =
0:5

1+tan(1=3) � 0:5 so that it is within the
discrete frequency domain. The centre frequency is halved at each change of scale, which
implies that � is doubled (Equation 3). The orientation of the �lters varies in steps of �=4,
and three scales are used. These choices result in a bank of 12 �lters which gives good
coverage of the frequency domain, and little overlap between �lters [12]. For practical
implementation, �lters are truncated at 3�, giving kernels of sizes 9 � 9, 17 � 17 and
35� 35.

The use of circularly symmetric �lters means that Equation 2 is separable. The 2-D
convolution can thus be computed using four 1-D convolutions, which reduces the number
of computations required for an N �N kernel by a factor of order N [12].

These �lters are applied to the image, and the mean energy of each �lter is computed
for each 16 � 16 block in the image. The energy is then quantized into 10 bands, which
were chosen by examining histograms of the �lter energy at each pixel for 500 images. A
feature is stored for each �lter which has an energy in a band greater than the [0; 2) band.
This means that there are 27648 possible such features for a 256 � 256 image, of which a
given image may have at most 3072 (in practice this does not arise). Histograms of the
mean �lter outputs are also stored, giving a measure of the global texture characteristics
of the image.

3.4 Similarity Computation and Relevance Feedback

Relevance feedback has been shown to be extremely useful in text retrieval applications
[27], and it has been applied in some CBIRSs [42]. In an image database application,
it o�ers two advantages. First, by augmenting the query with features from relevant
retrieved images, one can produce a query which better represents the user's information
need. The second advantage is unique to the image retrieval problem. In text retrieval,
feature extraction is free: the documents' component words are themselves the features.
This is not the case in image retrieval. We envisage a system in which expensive features
are extracted from images when the database is built, even though such features may be
too numerous and too expensive to evaluate for a new query image. Nevertheless, once
some images are retrieved using a subset of cheap features, complex features can be added
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to the query via relevance feedback. The use of inverted �le data structure means that
the addition of \rare" features adds to the cost of query evaluation only when they are
likely to be relevant.

The similarity between images in the database and a query is always computed as if
it were a relevance feedback query { the �rst query simply consists of a single relevant
image. Features are combined according to by summing their frequencies of occurrence df
(block features have a frequency of 1). For a query q containing N images i with relevance
levels Ri 2 [�1;+1] and features j with frequencies df ij , we have

df qj =
1

N

NX
i=1

df ij � Ri (4)

Features can be evaluated in order according to df qj, allowing the search to be pruned.
For each feature j of the M features in q, the list of images containing that feature

is retrieved and added to the pool of candidate images. For non-histogram features, the
score sk of each image k is updated according to

sknew = skold + df qjdf kj log cf
�1
j ; (5)

where cf j is the frequency of the feature j in the entire database. This equation originates
from a text retrieval scheme. Its motivation is very simple: features which are common
in an image characterize that image well; features which are common in the collection do
not distinguish that image well from others [26]. It is worth noting that dimensionality
reduction schemes such as Principal Components Analysis [23, 24] can have the e�ect of
eliminating these \rare" dimensions which can in fact be very useful for creating a speci�c
query. For histogram features, the score is updated according to

sknew = skold + sign(df qj)min(jdf qjj; df kj) log cf
�1
j ; (6)

which is a weighted variant of standard histogram intersection.

4 Experiments

An evaluation of Viper performance was carried out using a set of 500 unconstrained colour
images provided by T�el�evision Suisse Romande. These images contained some \runs" of
images from the same footage, so some highly similar images are present. Sample images
are shown in Figure 1.

Ten images were selected as queries by a human user, who examined the whole set
of 500 images to determine the set of relevant images for each query. These relevant
sets varied greatly in size, the smallest containing three images and the largest nineteen
(which partially accounts for the di�ering appearances of the graphs in Figures 2 and 3).
The degree of visual similarity also di�ered greatly, ranging from 7 very similar standard
images of German banknotes (the collection contains 37 such images of various countries'
banknotes) to set a of quite di�erent photographs taken in various libraries. It is usual to
get a group of users to perform this task and then to pool the results, though this makes
it more di�cult to evaluate relevance feedback experiments, since di�erent users may have
di�ering notions of what is relevant.

Each image was presented to Viper as an initial query, and 20 images were returned
to the user. The user could then mark as many as desired of these images as relevant.
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\Parliament" \Cityscape" \German

Banknote"

\Magic Show"

Figure 1: Sample images from the Viper test database.

Negative feedback was not employed in this experiment. This set of relevant images was
then submitted as a second query.

A comparison was made between the performance of Viper and that of a vector space
system of the sort commonly used in image retrieval, reported in earlier work [34]. The
system uses a set of 16 colour, segment, arc and region statistics. The Euclidean distance
between each image in the database and each query image is computed exhaustively.

System performances are compared using precision and recall, which are de�ned as

Precision = r
N (7)

Recall = r
R ; (8)

where N is the total number of images (documents) retrieved, r is the number of relevant
images retrieved, and R is the total number of relevant images in the collection.

Precision and recall data are often presented in the form of a Precision vs. Recall
graph, which shows, in general, how precision decreases as increasingly large fractions of
the collection are retrieved. An ideal Precision vs. Recall graph has Precision = 1 for
all values of Recall : all the relevant images are retrieved before any irrelevant ones. The
closer Precision stays to 1, the better.

Figures 2 and 3 show the performances of the two systems on six of the ten queries.
Two plots are shown for the Viper system, indicating performance before and after the
relevance feedback step. It should be remembered that the user was only shown the top
twenty ranked images after the �rst pass: it was thus not in general possible to include all
relevant images in the feedback query.

The plots clearly indicate the value of relevance feedback. In all cases except the
\Crowd Outdoors" query the use of relevance feedback resulted in an improvement in
Precision to a value of 1 over a large part of the Recall domain. The Precision of the
relevance feedback queries remains higher than that of either the �rst pass of Viper or
that of the vector space system at almost all Recall values, often dramatically so.

The performance of the very large feature space Viper �rst pass is also better than
that of the vector space system for most queries, the exceptions being the broad categories
of \Cityscape" and \Magic Show". In both cases the relevance feedback phase reversed
this situation.
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5 Conclusion

In this paper we have indicated how techniques inspired by text retrieval can be applied
to the content-based query of image databases. We believe that there is much to be learnt
from the decades of research in text retrieval, despite the fact that the terms of text queries
(words) are much closer to the semantic level than the simple features usually used for
image retrieval.

The use of inverted �les, coupled with an appropriate choice of discrete features, allows
feature spaces of extremely high dimensionalities to be searched e�ciently. We have
demonstrated the application of this technique to an image retrieval system with more
than 80000 possible features.

The use of Precision and Recall graphs provides a standard means of comparing system
performances. Experiments using 10 queries on a test database of 500 images demonstrated
that the Viper system, using frequency-based weights, performed better than a vector
space system even without relevance feedback. One iteration of relevance feedback always
improved performance, often dramatically.

Acknowledgments

This work was supported by the Swiss National Foundation for Scienti�c Research (grant
no. 2000-052426.97).

References

[1] A. D. Bimbo and P. Pala. Shape indexing by multi-scale representation. In Smeulders
and Jain [31], pages 43{50.

[2] C. Carson, S. Belongie, H. Greenspan, and J. Malik. Region-based image querying. In
CVPR '97 Workshop on Content-Based Access of Image and Video Libraries, Puerto
Rico, June 1997. IEEE Computer Society.

[3] C. Chang and S. Chatterjee. Ranging through Gabor logons, a consistent, hierarchical
approach. IEEE Transactions on Neural Networks, 4(5):827{843, September 1993.

[4] S. D. Cohen and L. J. Guibas. Shape-based image retrieval using geometric hashing.
In Proceedings of the ARPA Image Understanding Workshop, May 1997.

[5] Proceedings of the 1996 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR '96), San Francisco, California, June 1996.

[6] J. G. Daugman. High con�dence visual recognition of persons by a test of statistical
independence. IEEE Transactions on Pattern Analysis and Machine Intelligence,
15(11):1148{1161, 1993.

[7] A. Dimai. Spatial encoding using di�erences of global features. In I. K. Sethi and
R. C. Jain, editors, Storage and Retrieval for Image and Video Databases V, volume
3022 of SPIE Proceedings, pages 352{360, February 1997.

[8] M. Frydrych, J. Parkkinen, and A. Visa, editors. The 10th Scandinavian Conference
on Image Analysis (SCIA'97), Lappeenranta, Finland, June 1997. Pattern Recogni-
tion Society of Finland.

8



[9] W. R. Grei�. A theory of term weighting based on exploratory data analysis. In
W. B. Croft, A. Mo�at, C. J. van Rijsbergen, R. Wilkinson, and J. Zobel, editors,
Proceedings of the 21st Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 11{19, Melbourne, Australia, Au-
gust 1998. ACM Press, New York.

[10] A. Gupta and R. Jain. Visual information retrieval. Communications of the ACM,
40(5):70{79, May 1997.

[11] K. Han and S.-H. Myaeng. Image organization and retrieval with automatically con-
structed feature vectors. In H.-P. Frei, D. Harman, P. Sch�auble, and R. Wilkinson,
editors, Proceedings of the 19th Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval (SIGIR'96), pages 157{165, Z�urich,
Switzerland, August 1996.

[12] A. Jain and G. Healey. A multiscale representation including opponent color fea-
tures for texture recognition. IEEE Transactions on Image Processing, 7(1):124{128,
January 1998.

[13] A. K. Jain and A. Vailaya. Image retrieval using color and shape. Pattern Recognition,
29(8):1233{1244, August 1996.

[14] T. Kuyel and J. Ghosh. A fast space localized computation of the outputs of a Gabor
�lter bank. In Proceedings of the IASTED Conference on Signal and Image Processing
(SIP-95), Las Vegas, USA, November 1995.

[15] F. Liu and R. Picard. Periodicity, directionality, and randomness: Wold features for
image modeling and retrieval. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 18(7):722{733, July 1996.

[16] W. Ma and B. Manjunath. Texture features and learning similarity. In CVPR'96 [5],
pages 425{430.

[17] W. Y. Ma, Y. Deng, and B. S. Manjunath. Tools for texture- and color-based search
of images. In B. E. Rogowitz and T. N. Pappas, editors, Human Vision and Electronic
Imaging II, volume 3016 of SPIE Proceedings, pages 496{507, San Jose, CA, February
1997.

[18] T. P. Minka and R. W. Picard. Interactive learning using a \society of models". In
CVPR'96 [5], pages 447{452.

[19] F. Mokhtarian and S. A. J. Kittler. E�cient and robust retrieval by shape content
through curvature scale space. In Smeulders and Jain [31], pages 35{42.

[20] W. Niblack, R. Barber, W. Equitz, M. D. Flickner, E. H. Glasman, D. Petkovic,
P. Yanker, C. Faloutsos, and G. Taubin. QBIC project: querying images by content,
using color, texture, and shape. In W. Niblack, editor, Storage and Retrieval for
Image and Video Databases, volume 1908 of SPIE Proceedings, pages 173{187, April
1993.

[21] S. C. Orphanoudakis, C. E. Chronaki, and D. Vamvaka. I2net: Content-based similar-
ity search in geographically distributed repositories of medical images. Computerized
Medical Imaging and Graphics, 20(4):193{207, 1996.

9



[22] A. Pentland, R. W. Picard, and S. Sclaro�. Photobook: Tools for content-based ma-
nipulation of image databases. International Journal of Computer Vision, 18(3):233{
254, June 1996.

[23] Z. Pe�cenovi�c. Image retrieval using latent semantic indexing. Final year graduate
thesis, June 1997. AudioVisual Communications Lab, Ecole Polytechnique F�ed�erale
de Lausanne, Switzerland.

[24] T. Pun and D. M. Squire. Statistical structuring of pictorial databases for content-
based image retrieval systems. Pattern Recognition Letters, 17:1299{1310, 1996.

[25] G. Salton. The state of retrieval system evaluation. Information Processing and
Management, 28(4):441{450, 1992.

[26] G. Salton and C. Buckley. Term weighting approaches in automatic text retrieval.
Information Processing and Management, 24(5):513{523, 1988.

[27] G. Salton and C. Buckley. Improving retrieval performance by relevance feedback.
Journal of the American Society for Information Science, 41(4):288{287, 1990.

[28] S. Santini and R. Jain. Similarity queries in image databases. In CVPR'96 [5].

[29] S. Sclaro�. Deformable prototypes for encoding shape categories in image databases.
Pattern Recognition, 30(4):627{642, April 1997. (special issue on image databases).

[30] S. Sclaro�, L. Taycher, and M. La Cascia. ImageRover: a content-based browser for
the world wide web. In IEEE Workshop on Content-Based Access of Image and Video
Libraries, San Juan, Puerto Rico, June 1997.

[31] A. W. M. Smeulders and R. Jain, editors. Image Databases and Multi-Media Search,
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands, August 1996. Intelligent Sen-
sory Information Systems, Faculty of Mathematics, Computer Science, Physics and
Astronomy, Amsterdam University Press.

[32] J. R. Smith and S.-F. Chang. Tools and techniques for color image retrieval. In I. K.
Sethi and R. C. Jain, editors, Storage & Retrieval for Image and Video Databases IV,
volume 2670 of IS&T/SPIE Proceedings, pages 426{437, San Jose, CA, USA, March
1996.

[33] D. M. Squire. Learning a similarity-based distance measure for image database or-
ganization from human partitionings of an image set. In Fourth IEEE Workshop on
Applications of Computer Vision (WACV'98), Princeton, NJ, USA, October 1998.

[34] D. M. Squire and T. Pun. A comparison of human and machine assessments of image
similarity for the organization of image databases. In Frydrych et al. [8], pages 51{58.

[35] J. Tague-Sutcli�e. The pragmatics of information retrieval experimentation, revis-
ited. In K. Spark Jones and P. Willett, editors, Readings in Information Retrieval,
Multimedia Information and Systems, chapter 4, pages 205{216. Morgan Kaufmann,
340 Pine Street, San Francisco, USA, 1997.

[36] A. Tversky. Features of similarity. Psychological Review, 84(4):327{352, July 1977.

10



[37] A. Vellaikal and C.-C. J. Kuo. Content-based image retrieval using multiresolution
histogram representation. In C.-C. J. Kuo, editor, Digital Image Storage and Archiv-
ing Systems, volume 2606 of SPIE Proceedings, pages 312{323, Philadelphia, PA,
USA, October 1995.

[38] M. Vetterli and J. Kova�cevi�c. Wavelets and sub-band coding. Prentice-Hall, Engle-
wood Cli�s, NJ, 1995.

[39] T. P. Weldon and W. E. Higgins. Integrated approach to texture segmentation using
multiple gabor �lters. In P. Delogne, editor, IEEE International Conference on Image
Processing (ICIP'96), Lausanne, Switzerland, September 1996.

[40] D. A. White and R. Jain. Similarity indexing: algorithms and performance. In
I. K. Sethi and R. C. Jain, editors, Storage and Retrieval for Still Image and Video
Databases IV, volume 2670 of SPIE Proceedings, March 1996.

[41] I. H. Witten, A. Mo�at, and T. C. Bell. Managing gigabytes: compressing and in-
dexing documents and images. Van Nostrand Reinhold, 115 Fifth Avenue, New York,
NY 10003, USA, 1994.

[42] M. E. Wood, N. W. Campbell, and B. T. Thomas. Iterative re�nement by relevance
feedback in content-based digital image retrieval. In Proceedings of The Fifth ACM
International Multimedia Conference (ACM Multimedia 98), pages 13{20, Bristol,
UK, September 1998.

[43] R. Zarita and S. Lelandais. Wavelets and high order statistics for texture classi�cation.
In Frydrych et al. [8], pages 95{102.

[44] J. Ze Wang, G. Wiederhold, O. Firschein, and S. Xin Wei. Wavelet-based image
indexing techniques with partial sketch retrieval capability. In Proceedings of the
Fourth Forum on Research and Technology Advances in Digital Libraries, pages 13{
24, Washington D.C., May 1997.

11



0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

‘‘Parliament’’

Viper with Relevance Feedback
Viper first pass

Vector space

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

‘‘Cityscape’’

Viper with Relevance Feedback
Viper first pass

Vector space

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

‘‘German Banknotes’’

Viper with Relevance Feedback
Viper first pass

Vector space

Figure 2: Precision vs. Recall graphs for 3 queries, comparing the vector space system
with the Viper system, both with and without one phase of relevance feedback.
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Figure 3: Precision vs. Recall graphs for 3 queries, comparing the vector space system
with the Viper system, both with and without one phase of relevance feedback.
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