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Abstract

In this paper we employ human judgments of image sim-
ilarity to improve the organization of an image database.
We first derive a statistic,�B which measures the agree-
ment between two partitionings of an image set.�B is used
to assess agreement both amongst and between human and
machine partitionings. This provides a rigorous means of
choosing between competing image database organization
systems, and of assessing the performance of such systems
with respect to human judgments.

Human partitionings of an image set are used to define
an similarity value based on the frequency with which im-
ages are judged to be similar. When this measure is used
to partition an image set using a clustering technique, the
resultant partitioning agrees better with human partition-
ings than any of the feature-space-based techniques inves-
tigated.

Finally, we investigate the use multilayer perceptrons
and aDistance Learning Networkto learn a mapping from
feature space to this perceptual similarity space. The Dis-
tance Learning Network is shown to learn a mapping which
results in partitionings in excellent agreement with those
produced by human subjects.

1. Introduction

The rapid growth of the world wide web and the use of
digital images in the preparation of paper documents mean
that millions of people now access multimedia documents
daily. Multimedia documents contain images, either static
or as video frames. There is thus a need for systems that
allow users to create, manage and query image databases
in an efficient and accurate manner. The attachment of text

�This work is supported by the Swiss National Foundation for Scientific
Research (grant no. 2100-045581.95).

labels to images is inadequate, since identical images can
be described in different ways, and controlled vocabulary
indexing is now deemed insufficient even in text retrieval
systems. Consequently, there is great interest in content-
based image retrieval systems (CBIRSs).

A CBIRS retrieves images from a database based on their
similarity to a query image or sketch [6, 25]. There are
now several commercial CBIRSs available, such as IBM’s
QBIC [5] and the Virage system [6]. The emergence of
commercial systems does not indicate that the technology
is mature, only that the demand for it is very strong.

Current systems face great difficulties, due to the fact
thatperceived image similarityis both subjective and task-
dependent. We seek to improve the performance of CBIRSs
by using machine learning to incorporatehuman similarity
judgmentsin the process of database organization. Resul-
tant systems should have better measures of image similar-
ity than those based solely upon image features.

We have performed experiments to measure the agree-
ment between human partitionings of an image set, as well
as agreement between human and machine partitionings.
We have developed ameasure of the agreementbetween
two such partitionings, based on pair-wise subset member-
ship comparisons. Random partitionings can have signifi-
cant chance agreement. We have derived a better,chance-
corrected, agreement measure. The expected chance agree-
ment can be large, especially for the small image sets often
used to test CBIRSs. It isvital to take this into account.

Agreement between humans is significantly better than
chance, but much less than might have been anticipated.
Agreement between human and machine partitionings is not
as great. No single similarity measure can be expected to
satisfy all users.

We envisage a complete CBIRS architecture which ex-
hibits a gradual transition from an expert-designed feature
space to a user- and task-specific “query-interaction space”
(See Figure 1). In this paper, we are concerned with the
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third stage: the “shared similarity space”. Although a com-
plete system will develop individual user models, we see
a role for an initial mapping from feature space to a space
in which distances reflect image similarities commonly per-
ceived by humans.

Figure 1. Architecture of proposed complete
CBIRS

We show how human partitionings of an image set can
be used to define a similarity value for each pair of images.
This value leads to partitionings which agree better with hu-
man partitionings than any other method tried. Finally, we
demonstrate a system which learns a mapping between im-
age features and this similarity space.

2. State of the art

2.1. Features

Semantic retrieval remains impossible;e.g.no existing
system can retrieve all images of cats, regardless of colour,
background and pose, from a large heterogeneous database.
This difficulty can be partially avoided by working in re-
stricted domains, such as industrial trademarks [7] or ma-
rine animals [13]. In general, an attempt is made to capture
similarity using some function of a set of low-level image
features.

The most frequently used feature is colour [7, 18]. Sim-
ilarity is defined as some distance between colour distribu-
tions, most commonly the colour histogram [23, 6]. Many
systems use texture features, such as hierarchies of Ga-
bor filters [10], the Wold features [9] used in Photobook
[14], coarseness, contrast, and directionality in QBIC [5],
or wavelet-based decompositions [24]. Importantly, images
may have similar global colour or texture statistics, but lit-
tle visual similarity, due to differing spatial distributions of
these features.

Shape features are also often global (one shape per im-
age), and are thus best applied to restricted domains. Modal
matching has been applied to fish, rabbits and machine tools
[17]. Other shape-based approaches include multi-scale
representation of curves [2], histograms of edge directions

[7, 16] and maxima of zero-crossing contours of curvature
scale space images [13].

Global descriptors can be augmented by features which
retain spatial information, such as Daubechies’ or Haar
wavelet decompositions [25]. Alternatively, images may be
segmented into regions, from which features are extracted,
such as colour, size, location and relationships to other re-
gions. This approach adds labeled graph matching to the
image retrieval problem.

2.2. Similarity

CBIRSs aim to return images which, according to human
perception, aresimilar to a query image. Remarkably, few
such systems consider what similarity means in the context
of human usage. Those that do report that human similarity
judgments similarity noticeably differ (e.g.[13]). Typically,
images are represented as points in a multidimensional fea-
ture space. A metric defined on this space is used to measure
dissimilarity between images: images close to the query are
similar to the query.

It is often implied that given the “right” features (an
appropriate colour space [23, 18], texture features “corre-
sponding to human perception” [9]), proximity in feature
spacemustcorrespond to perceptual similarity. There are
several reasons to doubt this. Most fundamentally, there is
psychophysical evidence that human similarity judgments
do not obey the requirements of a metric: self-identity, sym-
metry and the triangle inequality [22].

Some authors have addressed this problem. Self-
organizing maps have been used to cluster texture features
according to class labels provided by human judgments
[10]. Minka and Picard report a system which learns group-
ings of similar images from positive and negative examples
provided by users during query sessions [11, 12]. Their
approach is very similar in spirit to the present work, al-
though the set-based learning methods applied differ from
the direct mapping from feature space to similarity space
presented here. The approach we discuss avoids the need to
recompute groupings whenever a new image is added to the
dataset.

3. Image similarity and agreement between
partitionings of a set

It is difficult to assess objectively the performance of
CBIRSs because image retrieval researchers lack large sets
of images for which the similarity “ground truth” is known.
In contrast, text-based document retrieval researchers fre-
quently use data from the same large, expert-classified
datasets, which permits the quantitative comparison of doc-
ument retrieval systems.
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In order to investigate human similarity judgments, we
asked human subjects to partition a set of unconstrained
colour images into a number of subsets, with no prompting
or guidance. A method for assessing the agreement between
partitionings produced by pairs of subjects was developed
[21], based on statistical measures of reliability well-known
in medical and psychological research [1, 4].

The manner in which a user partitions an image set de-
pends, of course, on the task which the user is perform-
ing. We chose not to specify any task or criteria in advance
precisely because this is the implicit assumption made by
CBIRSs which include neither learning nor relevance feed-
back. It is with respect to this baseline that we wish to com-
pare the various systems’ performances.

We used a variety of machine systems to cluster the same
set of images. The agreement between the machine and the
human partitionings was computed. Averaged over all hu-
mans, this provides a measure of the overlap of each ma-
chine measure of image similarity with the common human
measure, which can be used to rank competing systems.
The average agreement between pairs of humans gives an
indication of the best performance that could be expected
of anymachine partitioning.

3.1. The�B statistic

In measuring the agreement between two partitionings
of an image set, pairs of images are considered individually
(since the subsets are unlabeled). Consider the set of images
� = fI1; : : : ; INg. Two subjects, A and B, independently
partition� into M subsets. The resultantpartitioningsof
� are�A = f�A1

; : : : ; �AM g and�B = f�B1
; : : : ; �BM g.

For each pair of imagesIi andIj , there are four possibili-
ties:

((Ii 2 �Ak) ^ (Ij 2 �Ak)) ^ ((Ii 2 �B
 ) ^ (Ij 2 �B
 ))

((Ii 2 �Ak) ^ (Ij =2 �Ak)) ^ ((Ii 2 �B
 ) ^ (Ij =2 �B
 ))

((Ii 2 �Ak) ^ (Ij 2 �Ak)) ^ ((Ii 2 �B
 ) ^ (Ij =2 �B
 ))

((Ii 2 �Ak ) ^ (Ij =2 �Ak )) ^ ((Ii 2 �B
 ) ^ (Ij 2 �B
 )):

In the first two cases subjects A and B agree that imagesIi
andIj are either similar or dissimilar, and in the second two
they disagree. We define a binary variableXij(�A;�B),
which is 1 when A and B agree abouti andj, and 0 other-
wise. Anormalized agreement measure,S, whereS = 0 in-
dicates complete disagreement andS = 1 complete agree-
ment, can then be defined as

S(�A;�B) =
2

N(N � 1)

N�1X
i=1

NX
j=i+1

Xij(�A;�B)
(1)

This measure has a problem: it fails to correct for chance
agreements, which has been shown to be extremely impor-
tant [1, 4]. A better agreement measure is Cohen’s kappa

statistic [4]:

�(�A;�B) =
observed agreement� expected chance agreement

1� expected chance agreement

=
S(�A;�B)� E[S(�A;�B)]

1� E[S(�A;�B)]
: (2)

E[S] depends on subject behaviour. We have shown that
assuming that subjects assign images to subsets with equal
probabilities is inadequate, and derived a means of ex-
tending the usual Bayesian approach to the case of unla-
beled subsets [21]. The resultant statistic,�B , ranges from
�E[S(�A;�B)]
1�E[S(�A;�B)]

to 1. In practice only the positive part of its
range is used: we can usually design a system which does
better than chance!

3.2. Agreement between and amongst humans and
machines

We used�B to measure the agreement between parti-
tionings of 100 images1 into at most 8 subsets by a group
of 18 human subjects (a maximum of 8 subsets was chosen
since powers of two correspond to the maximum number of
subsets at each level of a binary tree, and to facilitate the
simultaneous viewing of all subsets). As might be expected
for such an unconstrained task, there was great variation
between the partitionings produced, but�B was always sig-
nificantly greater than zero. The average�B between all
pairs of human subjects was 0.3450. The maximum and
minimum values were 0.6266 and 0.1736. These numbers
might be thought of as a benchmark for the performance
that could be expected from a machine image partitioning
systemon this task.

18 varieties of factor-analysis-based image classification
systems were applied to the same set of images [21]. The
average agreement between machine and human partition-
ings was 0.1067. The extreme values were 0.0250 and
0.2312. Clearly, these machine techniques failed to capture
the common component of human image similarity judg-
ment. We propose to use machine learning to seek a better
result.

4. Frequency-based similarity

We want to use the ground-truth data provided by hu-
man image partitionings to improve the performance of ma-
chine image set partitioning techniques. We thus need a
way of converting the human partitionings into similarity-
based distances between pairs of images, since some dis-
tance forms the basis of most partitioning techniques.

1Images were selected at random from a set of 500 unconstrained im-
ages provided by T´elévision Suisse Romande.
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We propose a distance based on the frequency with
which human subjects judge a pair of images to be dissimi-
lar. Let the distance between imagesIi andIj bedf (Ii; Ij).
ForP subjects, letk 2 [1;

�
P
2

�
] index each possible pair of

subjects(Ak; Bk).

df (Ii; Ij) =
2

P (P � 1)

P (P�1)=2X
k=1

1�Xij(�Ak ;�Bk):
(3)

Since these distances are not derived from locations in
a feature space, geometric clustering techniques can not be
applied, since distances between clusters based on their cen-
tre coordinates cannot be computed. Images and clusters
simply do not have coordinates.

The Unweighted Pair Group Method [20] was applied to
cluster the images based on the distance matrix defined by
Equation 3. The closest pair of images or clusters is found
by exhaustive search, and these are merged to form a new
cluster. There is a number of ways of computing the dis-
tance between this new cluster and the other images or clus-
ters, such as the arithmetic mean of the distances between
the merged clusters and the others. Several techniques were
tried, and the best results, as measured using�B , were ob-
tained using the sum of the distances to the other clusters.
The agreements between this machine clustering and the 18
human clusters are shown in Table 1.

0.4458 0.3331 0.2837 0.3706 0.4174 0.4121
0.3371 0.4149 0.3246 0.4823 0.4350 0.4056
0.4724 0.4532 0.4686 0.3814 0.4852 0.3800

Table 1. Agreements between the frequency-
based similarity clustering and human parti-
tionings.

The average agreement was 0.4057. Remarkably, this
is greater than the average agreement between the human
clusterings used to derive the distance matrix. This sug-
gests that this “frequency of dissimilarity”-based distance
is a good candidate for the common factor in human judg-
ments of image similarity.

5. Generalizing this distance

If ground truth data were available for all images in a
database, this measure could be used directly. This, how-
ever, is unlikely. We want to relate this measure to image
features, so that distances can be calculated between images
never seen by a user. We seek a mapping from feature space
to perceptual similarity space.

5.1. Multilayer perceptrons

Multilayer perceptrons, trained by backpropagation,
were applied to the task. The target output was the similar-
ity between a pair of images (Equation 3). The input con-
sisted of colour, segment, arc and region features extracted
from the images.

A variety of networks was tried. The average agreement
between the clustering produced by a network with two 16
node hidden layers and the human clusterings was 0.1586.
In earlier experiments, the average agreement between fac-
tor analysis-based clusterings and the human clusterings
was 0.1067 [21]. This is thus an improvement. Increasing
the dimensionality of the network produced little change,
suggesting that the features used do not contain enough in-
formation for the desired mapping to be learnt.

5.2. Distance-learning networks

A new class of self-organizing network, the distance-
learning network (DLN), has been developed and applied
to this task. Based on the self-organizing feature maps
(SOMs) introduced by Kohonen [8], the DLN differs from
the standard SOM in several ways. First, nodes have both
input and output vectors. Standard SOMs have only input
vectors, though nets with output vectors have been used pre-
viously, e.g. in robot control [15]. These vectors allow an
input map and an output map simultaneously. These maps
may have differing dimensionalities, but neighbourhood re-
lationships in both are determined by the network topology.
A manifold of the dimensionality of the network is thus em-
bedded in both the input and output spaces.

The most significant difference between a DLN and a
SOM is the learning rules. At each iteration,two input vec-
torsv1 andv2, are presented. The nodes having the closest
input weightswi to the input vectors,n1 andn2, are found.
Thewi are updated according to

w
t+1
i = w

t
i + �

�
e�

d2
1i
2� (v1 �wt

i) + e�
d2
2i
2� (v2 �wt

i)

�
;

(4)

wheret is the timestep,� is a scale factor,dij is the distance
between nodesni andnj in the network topologyand� is a
radius of influence.� and� decrease as a function oft. This
is just the vector sum of two normal SOM update steps, and
the behaviour of the input mapping is exactly that of a SOM.

In the output space only the desired distances between
activated nodes are given. If the distance between the out-
put vectors of nodesni andnj is greater than that desired,
they attract(+), otherwise, they repel(�). Neighbours are
affected as above. The update rule for the output weightsoi
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(attraction) is

o
t+1
i = o

t
i � �

�
e�

d2
1i
2� (ot2 � oti) + e�

d2
2i
2� (ot1 � oti)

�
:
(5)

The input map learnt reflects the frequency distribution
and topology of the input vectors. If the dimensionality of
the network is less than that of the input subspace, the net-
work manifold will “fold itself” into it in a manner analo-
gous to a generalized nonlinear PCA [15]. The DLN allows
a distorted version of this topology to be learnt as the output
of the network.

In a CBIRS using well-chosen features, thetopologyof
feature space should be meaningful, even if absolute dis-
tances are not. Metaphorically, if two images are similar, we
would like to drag them closer together in similarity space.
If topology is meaningful, they should drag their neighbours
with them. The DLN realizes this goal. The influence on
neighbours is controlled by�.

Figure 2 shows how a distorted output space can be learnt
by a DLN, whilst preserving a topology determined by the
input space. The network, its inputs and its outputs were
all two-dimensional. Input vectors were distributed uni-
formly in the unit square. The target output distance waspjv1 � v2j2, except whenv1 andv2 fell in a circle of ra-
dius1=

p
8 centred at the origin, where it was halved.

(a) input map (b) output map

Figure 2. Input and output of a DLN. The cen-
troid and orientation of the output map are
arbitrary.

A variety of DLNs of different architectures were ap-
plied to the feature! similarity mapping task. We report
results for 5 three-dimensional networks of5�5�5 nodes,
with 16-dimensional input vectors and three-dimensional
output vectors, trained with pairs of images drawn from the
set of 100 used by the human subjects. Networks were as-
sessed using the average agreement between partitionings
resulting from clustering based on the output distances with
all human subjects. The results appear in Table 2. We recall
that the average intra-human agreement was 0.3450. The
fourth column of Table 2 shows network performance as a
percentage of this benchmark value. The DLNs do capture

mean std. dev. % of avg. hum.
Network 1 0.3413 0.0600 98.93
Network 2 0.3205 0.0583 92.90
Network 3 0.3469 0.0627 100.6
Network 4 0.3556 0.0461 103.1
Network 5 0.3300 0.0453 95.65

Table 2. Agreements between clusterings
based on DLN similarity clusterings and hu-
man partitionings.

the common component of human similarity judgments for
these images.

Figure 3 shows the input and output maps of Network
5 projected onto the first two dimensions of the input and
output spaces. The clusters in the output map are readily
apparent. Another advantage of the frequency-based simi-
larity distance is that clusters between which there was con-
fusion become neighbours in the DLN output space, since
their members have similarity values less than one with each
other. This means that a nearest-neighboursearch should re-
trieve relevant images even when the radius extends beyond
a given cluster.

(a) input map (b) output map

Figure 3. Input and output maps of Network 5

It should be noted that the values of image features play
no part in this mapping. Only their topological relationships
have a role. The output map is thus a form of topological
look-up table, all though 4950 distances have been encoded
(approximately) using only 375 variables.

6. Conclusion

We have proposed a measure of the agreement between
two partitionings of an image set. This measure,�B , has
the advantage that it is a point measure. Also, since similar-
ity judgments about all images in the dataset are obtained,
effectively, simultaneously during the partitioning process,
obtaining data for calculating�B should be cheaper in
user hours than gathering relevance judgments for a set of
queries. This is in contrast to the precision/recall graphs
often used to assess CBIRS performance. We believe that
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�B complements the precision/recall approach, particularly
for evaluating systems which use clustering to organize the
database for faster search.

We have shown how human partitionings of an image
set can be used to define a frequency-based similarity mea-
sure which leads to partitionings in excellent agreement
with those produced by human subjects. We have intro-
duced a new class of self-organizing network, theDistance-
Learning Network. We have demonstrated that DLNs can
learn a mapping from feature space to similarity space using
the frequency-based similarity measure as a target during
training. Partitionings of images sets obtained by clustering
in the this learnt similarity space were in excellent agree-
ment with human subjects, the average being 98.24% of the
mean intra-human agreement.
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