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Abstract

There is currently much interest in the organization and content-based querying
image databases. The usual hypothesis is that image similarity can be characterized
by low-level features, without further abstraction. This assumes that agreement
between machine and human measures of similarity is su�cient for the database to
be useful. To assess this assumption, we develop measures of the agreement between
partitionings of an image set, showing that chance agreements must be considered.
These measures are used to assess the agreement between human subjects and
several machine clustering techniques on an image set. The results can be used to
select and re�ne distance measures for querying and organizing image databases.
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1 Introduction

There has recently been a signi�cant increase in the amount of research into
methods for organizing and querying large image databases, containing many
images of unconstrained real-world scenes. In particular, there has been great
interest in developing means of querying such databases by image content,
rather than by performing text-based matching of labels attached to images
by a human expert [9,4,12,15,8,11,19]. The desire to use queries based on visual
content stems from the belief that the proverb \A picture is worth a thousand

words" encapsulates an important fact: simple text labels are inherently too
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terse to describe image contents adequately. 1 A measure of image similarity
is required, both for evaluating the similarity of images in the database to
a query image, and for organizing the database so that this search may be
performed e�ciently.

In this context, it is largely acknowledged that the object recognition problem
for images of unconstrained environments remains unsolved [4]. This has lead
many researchers to limit their work on content-based queries to databases of
images from extremely restricted domains, such as industrial trademarks [9,8],
or marine animals [14]. Even in these restricted domains, the approach has
not been to attempt to extract a semantic description of the image. Rather,
a variety of low-level image features has been employed, such as colour his-
tograms [4], colour, segment and arc statistics [17,12], or shape measures for
single object images [14,18]. In all these cases, the hypothesis has been that
image similarity can be characterized by combinations of these low-level fea-
tures, without it being necessary to move to a higher level of abstraction
such as full-blown object recognition. It is assumed that there is su�cient
agreement between machine and human measures of image similarity for the
database to be universally useful. In this paper we will assess the veracity of
this assumption.

In section 2 we discuss the need for a measure of image similarity in image
database systems, propose an experiment for assessing human judgment of
image similarity, and consider the ways in which such data could be used to
rate and improve machine measures. In section 3 we show how a mathematical
measure of the agreement between two partitionings of a set of images into un-
labelled subsets can be de�ned, and develop statistics from this measure which
indicate the degree to which the measured agreement is better than that ex-

pected by chance. The methodology of the experiment to assess the agreement
of human subjects with each other and with a variety of machine clustering
techniques is presented in section 4. The results of these experiments, and
their implications, are discussed in section 5. Finally, in section 6, the conclu-
sions which may be drawn from this work are summarized, and possible future
directions for research are proposed.

2 Image similarity

As discussed above, any such image database management system requires
some measure of image similarity, or, equivalently, the \distance" between

1 Actually, as pointed out by Picard [16], if there were a unique set of one thousand
words which best characterized an image, the query by content problem would be
e�ectively solved.
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pairs of images. This distance is frequently the Euclidean distance between
points in a multidimensional feature space. No matter what the exact details
of the calculation of this distance might be, the important point is that it
is a function of some features of the images. In short, the system designer
endeavours to select image features and a function of those features so that
the distance that results is a measure of image similarity.

The aim of an image database system is to assist a human user to retrieve
images. In systems which use query by image content, the query is itself an
image. Stated simply, the database system computes the distance between the
query image and the images in the database and returns to the user those
images which are \close" to the query image. This implies that the system's
measure of the distance between images corresponds to the user's notion of
the dissimilarity of, or perceptual distance between, those images. Moreover,
most such systems do not adapt to individual users (with the notable exception
of [13]), implying that there is a shared notion of image similarity amongst
humans. The implicit assumption of such systems is that there is su�cient
overlap between the machine and human measures of image similarity for the
database to be useful to all users. In this paper we will attempt to assess the
validity of this assumption.

2.1 Human judgment of image similarity

Our approach is to get human subjects to partition a set of colour images
with unconstrained content into a number of subsets, with no prompting or
guidance. A method for assessing the agreement between pairs of subjects
is described in section 3.1, based on statistical measures of reliability [1,3].
The intention of this experiment is to measure the degree to which human
subjects' measures of image similarity are consistent. These data will allow
us to assess how reasonable it is to expect any machine measure of image
similarity to agree with a human user. Further analysis of these data might
provide insights into desirable properties of clustering algorithms designed to
mimic human behaviour.

2.2 Using human similarity assessments to improve machine measures

In any attempt to construct a machine measure of image distance (where
a small distance implies a high similarity), there are a great many possible
image features from which to choose. Once a set of features is chosen, the
designer must then select from a wide variety of techniques for reducing the
dimensionality of the feature space, and then computing a distance. Once
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a distance measure has been decided upon, there is then a large number of
clustering techniques from which to choose when organizing the database.

It has been extremely di�cult in the past to make an objective assessment of
the performance of such systems and, consequently, to make judgments and
choices between candidate systems. This is because image retrieval researchers
lack large sets of images for which the \ground truth" is known. This is in
direct contrast to the situation in the text-based document retrieval commu-
nity, where much research uses data from the same large, expert-classi�ed
datasets, and quantitative comparisons between document retrieval systems
are made, notably in the TREC conference series. 2 The documents relevant
to a query are decided upon by a panel of experts, so even in the TREC com-
petitions the essentially subjective nature of information retrieval cannot be
escaped. Attempts have been made to use the statistics of human subjects'
ratings of the performance of vision algorithms to choose between and opti-
mize the algorithms. An example, using human judgments to choose between
edge detectors, is found in [7]. Minka and Picard [13] report a system closer
in spirit to our work. Their image database system interactively learns group-
ings of \similar" images from positive and negative examples provided by users
during query sessions. However, no explicit attempt is made to measure the
agreement between users, or between users and the system.

Our approach is to use a variety of machine systems to cluster the same set
of images that was presented to the human subjects into the same number of
subsets. It is then possible to compute the degree of agreement between the
machine and the human classi�ers. Averaged over all humans, this provides a
measure of the degree of overlap of each machine measure of image similarity
with the common human measure. This measure can thus be used to rank the
machine systems, and thus to choose between them.

3 Statistical measures of agreement

3.1 De�nition of the agreement measure

Initially, each subject or computer program performs the task described in
section 4: the source set of N images is partitioned into M unlabelled sub-

2
Text REtrieval Conference { The goal of the conference series is to encourage

research in information retrieval from large text applications by providing a large
test collection, uniform scoring procedures, and a forum for organizations interested
in comparing their results. Further information and proceedings are available at:
\http://potomac.ncsl.nist.gov/TREC/".
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sets, some of which may be empty. We wish to compute a measure of the
agreement between two subjects: we want to measure the similarity of their

image similarity measures. We will attempt to estimate this by considering
their agreement on the similarity or dissimilarity of pairs of images. There is
a literature concerning such comparisons, notably in the medical and psycho-
logical �elds, where the object is typically to measure the degree of agreement
between physicians assigning patients into a number of diagnostic categories
(for example, see [1,3]). Our problem di�ers from that paradigm in that the
subsets are unlabelled: there is no notion of two subjects assigning images to
the \same class".

Since the subsets are undi�erentiated, we will consider pairs of images individ-
ually. An agreement measure can be de�ned on this basis. Consider the set of
images � = fI1; : : : ; INg. Two subjects, A and B, independently partition �
intoM subsets. We will call the resultant sets of subsets of � partitionings of �.
These two partitionings are �A = f�A1

; : : : ; �AMg and �B = f�B1
; : : : ; �BMg.

For each pair of images Ii and Ij, there are four possibilities.

Both images are in the same subset in each partitioning:

((Ii 2 �Ak) ^ (Ij 2 �Ak)) ^ ((Ii 2 �B ) ^ (Ij 2 �B )): (1)

Both images are in di�erent subsets in each partitioning:

((Ii 2 �Ak) ^ (Ij =2 �Ak)) ^ ((Ii 2 �B ) ^ (Ij =2 �B )): (2)

Images are in the same subset in �A, but di�erent subsets in �B:

((Ii 2 �Ak) ^ (Ij 2 �Ak)) ^ ((Ii 2 �B ) ^ (Ij =2 �B )): (3)

Images are in di�erent subsets in �A, but the same subset in �B:

((Ii 2 �Ak) ^ (Ij =2 �Ak)) ^ ((Ii 2 �B ) ^ (Ij 2 �B )): (4)

Equations 1 and 2 describe cases in which subjects A and B have agreed
that images Ii and Ij are either similar or dissimilar, and Equations 3 and 4
describe cases of disagreement. We may de�ne a binary variable Xij(�A;�B),
which is 1 when A and B agree about images i and j, and 0 otherwise. A
raw agreement measure, Sraw(�A;�B), can be obtained by simply counting
the number of cases of agreement:

Sraw(�A;�B) =
N�1X
i=1

NX
j=i+1

Xij(�A;�B): (5)
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The range of Sraw(�A;�B) is [0;
�
N

2

�
], so a normalized agreement measure,

S(�A;�B) can be de�ned as

S(�A;�B) =
2

N(N � 1)

N�1X
i=1

NX
j=i+1

Xij(�A;�B): (6)

S(�A;�B) provides a measure of agreement between subjects A and B, and is
normalized to the range [0; 1], where S = 0 indicates complete disagreement,
and S = 1 complete agreement.

As an example, for the �rst two human subjects in this study, we obtained
S(�1;�2) = 0:8123 (see section 5.1 for details). At �rst glance this would seem
to indicate a very high level of agreement. This is misleading. We have failed
to correct our measure for chance agreements. Any two random partitionings
of the image set will have some agreement, which arises purely by chance. If
we have a model of the partitioning process, we can compute the expected
value of this chance agreement, and use it to correct the agreement measure.
Failure to consider chance agreement is a common failing in the image database
literature, even though the necessity of such correction is well-known in the
�eld of reliability studies.

Typically, if any comparison with users is made, a percentage intersection of
machine and user responses to a query image is given, usually for a small image
database. A good example is found in [6], where 131 images were arranged into
a two-dimensional grid using a self-organizing map (SOM). Users were asked
to select similar images from amongst these in response to query images drawn
from the same set. The performance measure quoted was the number X of
the user-selected images found within the 24-image square neighbourhood of
the query image in the SOM. Let us consider the case in which the images are
placed on the grid completely randomly. Neglecting boundary e�ects (which
are also ignored in [6]), if the user selects p relevant images, the expected
number E[X] of relevant images within a subset of q images drawn from the
remaining n� 1 images is

E[X] =
pq

n� 1
: (7)

In a typical example, the user selected 10 images relevant to the query, giving
E[X] = 1:9, and eight of these were found within the 24-neighbourhood of
the query image. It is misleading to describe this as 80% agreement, as is
usually done, since nearly 25% of this performance would be expected if a
random arrangement of images were used. It is clear that this e�ect will be
pronounced for the small test databases frequently used for assessing image
retrieval systems. As will be seen in the following matter, it is imperative that
this be taken into account.
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3.2 The kappa statistic

A more appropriate agreement measure is Cohen's kappa statistic [3]:

�(�A;�B) =
observed agreement� expected chance agreement

1� expected chance agreement

=
S(�A;�B)� E[S(�A;�B)]

1� E[S(�A;�B)]
: (8)

The true value of E[S] depends upon subject behaviour. When subsets are
labelled, a Bayesian approach is usually adopted. This can be extended to
the unlabelled case, as will be discussed in section 3.3. In the absence of such
information, we can estimate E[S] by making the minimal assumption that
a \blindfolded" subject assigns images to each subset with equal probability.
E[S] is then the expected value of S for two independent blindfolded subjects.
Xij is now a random variable, and we can �nd its distribution. We will call
this the blindfolded subject model.

Consider a pair of images, Ii and Ij. Each image is a member of a subset in
each of the partitionings �A and �B. For image Ii, let us label these subsets:
Ii 2 �Ak , and Ii 2 �B . We then have

Pr(Ij 2 �Ak) =
1

M
Pr(Ij 2 �B ) =

1

M

Pr(Ij =2 �Ak) =
M � 1

M
Pr(Ij =2 �B ) =

M � 1

M
: (9)

Using Equations 1 through 4, we obtain

Pr(Xij = 1) =
1 + (M � 1)2

M2
Pr(Xij = 0) =

2(M � 1)

M2
: (10)

We can now calculate the statistics of S, since it is the result of
�
N

2

�
trials of

a binomial process. We �nd that

E[S] =
1 + (M � 1)2

M2
�2[S] =

4(M � 1)(1 + (M � 1)2)

N(N � 1)M4
: (11)

We can use these in turn to compute the statistics of �:

E[�] = 0 �2[�] =
1 + (M � 1)2

N(N � 1)(M � 1)
: (12)

For the experiment described here, where N = 100 and M = 8, we �nd
that E[S] = 0:7813 and �[�] = 0:0269. Applying these new measures for the
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pair of subjects mentioned in section 3.1, we see that �(�1;�2) = (0:8123�
0:7813)=(1 � 0:7813) = 0:1420. Thus the agreement between these two sub-
jects, which at �rst glance seemed very high, is only 14.20% better than that
expected by chance. It is, however, more than 5 standard deviations away from
the mean, and thus we can still claim that the agreement between subjects 1
and 2 is signi�cant.

3.3 An alternative agreement measure

It was mentioned in section 3.1 that the blindfolded subject model used above
to derive Equation 11 has some short-comings. These arise because of the
assumption that the blindfolded subjects assign images to each of subsets
with equal probabilities. The nature of this problem becomes obvious if one
considers two blindfolded subjects, A and B, who each assign all images to a
single subset. For these two subjects �(AB) = 1, indicating perfect agreement,
and 100% improvement over chance. If, however, these subjects always behave
in this way, then E[Sraw(AB)] = N(N � 1)=2, and �(AB) = 1 always. Even
though these subjects exhibit \perfect agreement", this arises entirely from
their prior bias, and conveys no information about their judgments of image
similarity.

Preliminary experiments indicated that human subjects and, even more markedly,
computer classi�cation algorithms did indeed produce subsets of greatly vary-
ing sizes. For example, the computer algorithm referred to as X2 in section 5
produced subsets of sizes f6, 1, 8, 6, 47, 23, 4, 5g. Human subjects did not
exhibit such large bias towards particular subsets, although they too did not
produce subsets of equal sizes (see section 5.2 for details). The existence of
this bias means that the blindfolded subject model will not account well for
the observed data, and an alternative is required.

This problem can be avoided by taking into account the frequency with which
subjects assign images to each subset. This is easiest to understand if the
partitioning data are presented as a matrixA of intersections between subsets.
Table 1 shows an hypothetical example with N = 20 and M = 3.

The row and column marginal sums from Table 1 can be used to estimate each
subject's probability of assigning an image to a given subset. This \Bayesian"
expected value for element aij is [3]:

EB[aij] =
ai+a+j
N

: (13)

The matrix of expected intersections is shown in Table 2.

Table 1 contains enough information to calculate Sraw(AB), as de�ned in
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Subject A

�A1
�A2

�A3
a+j

Subject B

�B1 8 2 1 11

�B2
2 3 0 5

�B3
2 1 1 4

ai+ 12 6 2 20

Table 1
Intersections between subsets created by subjects A and B.

Subject A

�A1 �A2 �A3

Subject B

�B1 6.6 3.3 1.1

�B2 3.0 1.5 0.5

�B3 2.4 1.2 0.4

Table 2
Expected intersections between subsets given frequency data for subjects A and B.

Equation 5. If aij is the element in the ith row and jth column, then

Sraw(AB) =
X

1�i;j�M

�
aij
2

�
+

1

2

X
1�k;l;m;n�M
k 6=m; l 6=n

aklamn; (14)

where the usual de�nitions
�
1
2

�
� 0 and

�
0
2

�
� 0, are made. The �rst sum in

Equation 14 counts agreements of the form speci�ed by Equation 1 (agree-
ment that two images are similar), and the second sum counts the agreements
corresponding to Equation 2 (agreement that the images are dissimilar). The
factor of 1=2 in the second term arises because each pair of matrix elements
appears twice in the sum.

3.3.1 Estimating expected agreement given prior subset probabilities

This formulation provides us with a means of obtaining an approximation
to the expected value of Sraw. Although an exact calculation of E[Sraw] is
possible, it requires the enumeration of all possible assignments of images to
subsets, since Sraw is a nonlinear function of the faijg. Rather than perform-
ing this time-consuming calculation for each of the 630 pairs of partitionings
considered, we will approximate E[Sraw] by

~E[Sraw] = Sraw(fE[aij]g); (15)
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the value of Sraw computed from the matrix of expected intersections. It is
necessary to scale the values to integers so that

�
aij
2

�
can be computed. 3 Since

the faijg are always rational, and represent frequency information, this can
always be done. The value obtained can then be normalized to obtain ~EB[S]
(analogous to E[S] in Equation 11), which is used to calculate a new statistic,
�B, based on this new estimate of the expected chance agreement.

For the data in Table 2 we obtain ~EB[S] = 0:5063. This compares with
E[S] = 0:5556 from the blindfolded subject model. The corresponding agree-
ment measures are � = �0:0066 and �B = 0:0937. Taking into account the
subjects' biases towards the various subsets yields a �B indicating better than
chance agreement, whereas the blindfolded subject model gives a result worse
than chance. Indeed, the �B statistic seems to be always more \forgiving" than
the blindfolded subject model. The disadvantage of �B is that the expected
agreement is now dependent on the pair of subjects being considered, making
the interpretation of large tables of data more di�cult.

Simulations were performed to check the validity and possible bias of this es-
timate of EB[Sraw]. Pairs of partitionings from the experiments described in
section 4 were used to provide probabilities for subsets, and pairs of partition-
ings were created in which elements were assigned to the subsets according to
these probabilities. The similarity between these partitionings was computed,
and the results accumulated over many repetitions of the experiment. The
average similarity obtained from this simulation could then be compared with
the estimate provided by Equation 15 for the original pair of subjects.

Table 3 shows the results for human subjects S13 and S16 and for machine
algorithms X3 and X16, after 10 repetitions of comparisons between 10000
partitionings made with their subset probabilities. It can be seen that in nei-
ther case is the average di�erence between the estimate and the value obtained
by simulation greater than its standard deviation. From this, and numerous
similar tests, we can conclude that Equation 15 is an accurate, unbiased esti-
mator of EB[Sraw].

3.3.2 Dependence of EB[S] on subset probability distributions

As mentioned above, �B is a more \forgiving" statistic than the �, since the
EB[S] calculated from the experimentally observed subset frequencies is less
than that predicted by the blindfolded subject model. The chance-corrected
agreement is thus greater. It is interesting to investigate the value of EB[S]
for a variety of subset probability distributions. In order to do this, a para-

3 Alternatively, the extension of the binomial coe�cient function to non-integer ar-
guments in terms of gamma functions could be used. A description of the properties
of this function may be found in [5].
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S13 and S16 X3 and X16

Simulation Calculated Di�erence Simulation Calculated Di�erence

0.747813 0.747852 -0.000039 0.622178 0.622240 -0.000062

0.747755 0.747852 -0.000097 0.622506 0.622240 0.000266

0.747798 0.747852 -0.000053 0.622655 0.622240 0.000416

0.747870 0.747852 0.000019 0.622409 0.622240 0.000169

0.747819 0.747852 -0.000033 0.622265 0.622240 0.000025

0.747938 0.747852 0.000087 0.621858 0.622240 -0.000382

0.747843 0.747852 -0.000008 0.622473 0.622240 0.000233

0.747930 0.747852 0.000079 0.622124 0.622240 -0.000116

0.747999 0.747852 0.000147 0.622162 0.622240 -0.000078

0.747930 0.747852 0.000078 0.622391 0.622240 0.000151

avg. di�. ��: 0.000018 � 0.000073 average di�. ��: 0.000062 � 0.000219

Table 3
Comparison between EB [Sraw] estimated by simulation, and that given by Equa-
tion 15 for subjects S13 and S14, and machine algorithms X3 and X16.

metric probability density function for subset membership is required, which
allows the subset probabilities to vary, under the control of a parameter k,
from uniform to a delta function for a single subset. Such a function can be
constructed from an exponential distribution. On the interval [0; 1],

Pr(x) =
ke�kx

1� e�k
(16)

has the required properties. As k ! 0, Pr(x) approaches the uniform distribu-
tion. As k!1, Pr(x) approaches a delta function at the origin. If the interval
[0; 1] is divided into M equal subintervals, labelled f0; 1; : : : ; i; : : : ;M � 1g,
Equation 16 can be integrated to provide the probability of a uniformly-
distributed x falling into each subinterval:

Pr(x 2 i) =
e�

ki
M (1� e�

k
M )

1� e�k
: (17)

Pairs of 8-subset partitionings were produced, each having the same subset
probability distributions according to Equation 17. The agreement between
these partitionings was computed. This simulation was repeated 1000 times
for each value of k, so that EB[S] as a function of k could be estimated. The
resultant curve appears in Figure 1, where k appears on a log scale.

As expected, as k ! 0, EB[S] !
1+(M�1)2

M2 , the value derived from the blind
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Fig. 1. Estimated EB [S] as a function of log10(k).

subject model. As k ! 1, EB[S] ! 1, which corresponds to the degenerate
case described in section 3.3, in which all images are assigned to a single
subset. The values of EB[S] (as estimated by Equation 15) for the distributions
observed in the experiments reported in section 5 ranged from 0.576633 to
0.767303, indicating that in all cases the distributions fell into the region of
Figure 1 in which EB[S] is less than the blind subject model value. This
explains why the �B is more forgiving than � in the experiments reported in
section 5.

4 Experiments

The task that the human subjects were asked to perform was to partition a set
ofN images into at mostM subsets. This task was performed using a computer
program running on SUN workstations, which presented each subject initially
with a source image set, andM empty sets. Images could be dragged from any
image set and dropped in another image set using the mouse. When all images
from the source image set had been assigned to subsets, the partitioning could
be saved.

For this particular experiment, the source image set consisted of 100 colour
images selected at random from a set of 500 unconstrained images provided
by T�el�evision Suisse Romande. 4 The set of 500 images contained some \runs"

4 The 500 images constituted a consecutive subset of the full 10,000 images provided
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of images from the same video footage, and thus some highly similar images
could be expected. The images were randomly ordered so that images from the
same run would not necessarily be presented to the subject adjacently. The
same set of 100 images was used for all experiments reported here. Sample
images are shown in Figure 2.

Fig. 2. Sample images from the source set of 100 images (originals were in colour).

Subjects were given a brief demonstration of how the program worked, and
told that the notion of image similarity was entirely their choice. The task was
performed by 10 members of the computer vision research group at the Uni-
versit�e de Gen�eve (who may be considered to be have some expert knowledge),
and by 8 undergraduate students and lay-people.

The same set of images was classi�ed into a binary tree using Ascendant
Hierarchical Classi�cation (AHC) [2], using a variety of distance measures de-
rived by applying Correspondence Analysis (CA) [10], Principal Components
Analysis (PCA) and Normalized Principal Components Analysis (NPCA) to
a range of colour, segment and arc statistics, as described in detail in [17,12].
For each factor analysis technique, the classi�cation was performed using all
available features, and also with the features relating to colour information
excluded. For each of these cases, a classi�cation was done using 2, 4 and all
of the ranked factors. There were thus 18 di�erent machine partitionings of
the images. The third level of a binary tree contains at most 8 classes, and is
thus comparable with the human classi�cations described above.

5 Results and discussion

5.1 Agreement between humans

Table A.1 shows the agreement between all pairs of human subjects, as in-
dicated by the � values. For each subject Si, �[�Si] is the average agreement

by T�el�evision Suisse Romande.
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with all other subjects, excluding themselves:

�[�Si] =
1

Nsubjects

X
1�j�Nsubjects

j 6=i

�(�i;�j): (18)

Extreme values, some of which are discussed below, are highlighted with a
shaded background.

Summary statistics of these data are shown in Table 4. These statistics were
calculated with the self-agreement of 1 for each subject excluded. The most
important result is that the average agreement between human subjects is
18.53% better than would be expected by chance from the blindfolded subject
model. Whilst perhaps lower than some might have expected, this is still
more than 6 standard deviations away from the model mean. In fact, given
the model, Pr(� � 0:1853) = 9:202� 10�13. The hypothesis that the subjects
are \blindfolded" may be rejected with virtually complete con�dence.

In order to make a rough assessment of the e�ect of a degree of expertise
with image processing and computer vision, the statistics were also calculated
separately for the 10 members of the computer vision group (\experts"), and
the 8 lay-people.

mean median std. dev. � min. � max.

All Subjects 0.1853 0.1919 0.1241 -0.1627 0.4708

Experts 0.2368 0.2335 0.0972 0.0294 0.4708

Lay People 0.1359 0.1300 0.1604 -0.1627 0.4246

Table 4
Statistics summarizing the agreement between human subjects, using �. Full data
are found in Table A.1.

These data show that the agreement between experts is signi�cantly higher
than that between lay people, and that the variation between experts is less
than that between lay people. This result would seem to indicate that the
human image similarity measure is partially learnt.

Another interesting observation is that the subject for whom the average agree-
ment with all other subjects is least is H3. Subject H3 is a colour-blind male.
This result hints, not unexpectedly, that colour information is important in
human judgments of image similarity, and that purely morphological features
would prove an inadequate basis for a machine image similarity measure. A
single result, however, does not provide a sound statistical basis for this con-
clusion.

The data used to construct Table A.1 were also analyzed using the �B statistic.
The results appear in Table A.2, and the summary in Table 5.
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mean median std. dev. �B min. �B max.

All Subjects 0.3450 0.3381 0.0926 0.1736 0.6266

Experts 0.3773 0.3625 0.0822 0.2225 0.5868

Lay People 0.3181 0.2781 0.1128 0.1736 0.6266

Table 5
Statistics summarizing the agreement between human subjects, using �B . Full data
are found in Table A.2.

Using �B causes some reordering of the average agreement measure for the
subjects. The average change in rank for the subjects was 2.1. Despite this,
the trends remain the same. The agreement between experts is greater than
that between lay people, and the variance is smaller. The overall variance is
less than for the � statistic, which is to be expected, since the �B statistic
is calculated using an expected agreement value tailored speci�cally to the
particular pair of subjects being considered.

5.2 Agreement between machine partitionings

Analysis of the agreement between machine techniques can give an indica-
tion of the variance between a number of methods, and also of the stability
of each technique under changes in its parameters. As discussed in section 4,
the images were partitioned using AHC. The distance measures upon which
these clusterings were based were given by a variety of di�erent factor analy-
sis methods, either with or without colour information, and with di�ering
numbers of retained factors. Table 6 provides a key to the labelling of these
machine techniques in the tables that follow.

X1 X2 X3 X4 X5 X6 X7 X8 X9

CA
c 2

CA
c 4

CA
c all

CA
nc 2

CA
nc 4

CA
nc all

NPCA
c 2

NPCA
c 4

NPCA
c all

X10 X11 X12 X13 X14 X15 X16 X17 X18

NPCA
nc 2

NPCA
nc 4

NPCA
nc all

PCA c
2

PCA c
4

PCA c
all

PCA
nc 2

PCA
nc 4

PCA
nc all

Table 6
Key to computer partitioning methods. \c" means that colour features were used,
\nc" means that they were not. The last �eld indicates how many factors were
retained for the clustering. Details of these algorithms and features may be found
in [17].

Table 7 provides a summary of the agreement between the various machine
partitionings, as measured by �. The complete data appear in Table A.3. Both
tables are divided into sections so that the variance within and between the

15



various factor analysis techniques can be seen more easily, and extreme values
are again indicated by shading.

mean median std. dev. � min. � max.

All Variations -0.2662 -0.3142 0.3219 -0.7805 0.9511

All CA -0.2190 -0.6651 0.6394 -0.7805 0.9511

CA colour 0.3018 -0.0094 0.4592 -0.0362 0.9511

CA no colour 0.6996 0.6565 0.1063 0.5964 0.8458

All NPCA 0.2863 -0.0777 0.1856 -0.3059 0.3702

NPCA colour -0.0971 -0.1858 0.2159 -0.3059 0.2002

NPCA no colour 0.1996 0.1790 0.1317 0.0497 0.3702

All PCA 0.0413 -0.2375 0.4181 -0.3603 0.7433

PCA colour 0.7100 0.6999 0.0241 0.6869 0.7433

PCA no colour 0.3480 0.3258 0.0993 0.2390 0.4791

Table 7
Statistics summarizing the agreement between machine partitionings, using �. Full
data are found in Table A.3.

The �rst thing to note is that the average agreement between machine tech-
niques over all the used permutations of factor analysis method, feature choice
and number of factors retained is -0.2662. The agreement between machine
partitionings is worse than that which would be expected if the machines
simply assigned images to subsets with uniform probability.

At �rst, this seems to be a very depressing result for proponents of these
methods of unsupervised image clustering. It must be remembered, however,
that the behaviour of these techniques does not correspond at all well to
the blindfolded subject model. All the machine clusterings exhibit a strong
tendency to produce one or two very large subsets, and several very small
ones. This can be explained by the fact that the distribution of values of each
factor is approximately bell-shaped. There is thus a large number of images
with values close to the means of the factors, and only a few images in the
tails of the distribution. This results, using AHC, in several large subsets close
to the mean values of the factors, and other small subsets containing the
remaining images.

Inspection of the machine partitionings reveals that the mean maximum sub-
set size was 34, with standard deviation 8.4. The mean minimum subset size
was 1.7 with standard deviation 1.2. This compares with a mean maximum
of 24 with standard deviation of 4.7, and a mean minimum of 4.5 with stan-
dard deviation of 2.0 for the human subjects. These results indicate that the
machine techniques deviate from the uniform subset probability assumed by
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the blindfolded user model even more than the human subjects. This sug-
gests that a clustering technique which produced subsets of more uniform size
than AHC would better match human performance. Perhaps using a 1-metric,
rather than the standard Euclidean 2-metric, would help this.

This bias means that the �B statistic is a better indicator of improvement
over chance performance for machine techniques. Table 8 shows the summary
of these data reanalyzed using �B. The full data are in Table A.4.

mean median std. dev. �B min. �B max.

All Variations 0.2023 0.1574 0.1757 0.0176 0.9743

All CA 0.3404 0.0848 0.3437 0.0675 0.9743

CA colour 0.6185 0.4508 0.2518 0.4303 0.9743

CA no colour 0.8364 0.8134 0.0605 0.7765 0.9192

All NPCA 0.2862 0.2537 0.0949 0.2026 0.5511

NPCA colour 0.3019 0.2569 0.1037 0.2036 0.4453

NPCA no colour 0.4116 0.3518 0.0990 0.3319 0.5511

All PCA 0.3144 0.0877 0.2987 0.0626 0.8014

PCA colour 0.7824 0.7780 0.0141 0.7677 0.8014

PCA no colour 0.5517 0.5202 0.0673 0.4897 0.6453

Table 8
Statistics summarizing the agreement between machine partitionings, using �B . Full
data is found in Table A.4.

Now that the non-uniform probability of assignment to subsets has been taken
into account, it emerges that the agreement between all these techniques is
better than would be expected by chance. CA has the greatest self-agreement
under changes of the number of factors retained and NPCA the least, but the
values are within one standard deviation of each other. Few conclusions can
be drawn about the relative stability of these techniques. A self-agreement of
0.3404 seems very low for a completely deterministic technique.

From Table A.4 we can see that the self-agreement of these techniques is
very much higher when considering only the retention of 4 factors against the
same technique with all factors. For CA, for example, it is 0.9743 when colour
features are used, and 0.9192 when they are not. This con�rms that the data
are very well represented by only the �rst four factors, as should be the case
(the �rst four factors explain 88.35% of the variance in the CA space when
colour features are included).

The two techniques with the lowest agreement areX3 andX10: CA with colour
features and all factors retained against NPCA, with no colour information
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and only two factors.

5.3 Agreement between human and machine partitionings

It was established in section 5.2 that both human and machine partition-
ings exhibit such bias towards large subsets that the blindfolded user model
greatly overestimates the expected chance agreement. This means that �B
is the more appropriate measure of agreement. It is nevertheless interesting
to highlight some observations drawn from the � statistic. In summary, the
mean � agreement between all machine partitionings and all human subjects
was -0.2806. The best technique, averaged over the six variants, was PCA,
with -0.1844. The worst was CA, with -0.4663. Averaged over the three dif-
ferent numbers of retained factors, the best technique was PCA with colour
features, with �PCAc[�] = �0:1393, and the worst was CA with no colour,
with �CAnc[�] = �0:5060. The overall standard deviation was 0.1648, so these
results are signi�cant.

It is interesting to note that the only human subject with positive � values with
any machine technique was H16, for whom the � values with fX13; X14; X15g
(PCA with colour features) were f0.0876, 0.0266, 0.0109g respectively. Subject
H16 is in fact the �rst-named author of this paper, who has worked with
these machine image clustering methods for 12 months. This result has two
implications. First, it points to the dangers of allowing the creators of image
similarity measures to be their sole assessors. Secondly, and positively, it would
seem to indicate that human measures of image similarity are partially learnt:
after prolonged interaction with an image database system, the human begins
to judge image similarity in a similar way. The ability of humans to adapt to
a system which they are using relaxes the demands on the system.

Table 9 shows the summary of the �B agreement between all human and
machine partitionings of the images. The full data are found in Table A.5,
where extreme values are highlighted by shading.

The �rst thing to note is that, using �B, in all cases the agreement between
machine and human partitionings is positive. Secondly, the di�erence between
individual machine methods, when average across all human users, is much
less than it was when using �, indicating that the di�ering subset sizes were
largely responsible for those disparities. The machine technique with the least
improvement over chance was X6 (CA, no colour features, all factors retained),
with �[�B] = 0:0573. The best was X9 (NPCA, colour features, all factors
retained), with �[�B] = 0:1477. The standard deviation over all machine clus-
tering variants was 0.0240, so this di�erence is signi�cant.

When averaged over all 6 variants for each technique, NPCA was best, with
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mean median std. dev. �B min. �B max.

All Variations 0.1067 0.1058 0.0338 0.0250 0.2312

All CA 0.0915 0.0836 0.0371 0.0250 0.1825

CA colour 0.1169 0.1186 0.0308 0.0683 0.1825

CA no colour 0.0662 0.0621 0.0226 0.0250 0.1229

All NPCA 0.1233 0.1235 0.0281 0.0589 0.1911

NPCA colour 0.1388 0.1400 0.0235 0.0817 0.1911

NPCA no colour 0.1078 0.1068 0.0233 0.0589 0.1633

All PCA 0.1052 0.1007 0.0276 0.0553 0.2312

PCA colour 0.1167 0.1086 0.0296 0.0719 0.2312

PCA no colour 0.0936 0.0914 0.0197 0.0553 0.1328

Table 9
Statistics summarizing the agreement between human and machine partitionings,
using �B . Full data are found in Table A.5.

0.1233, and CA was worst, with 0.0915, with a standard deviation of 0.0130.
Again, this would seem to be signi�cant.

For each factor analysis technique, the use of colour features gave improved
agreement with the human subjects, corroborating the conjecture in sec-
tion 5.1.

For CA and PCA, performance with colour features was best when only two
factors were retained, but for NPCA, performance was best when all factors
were retained. In none of these cases, however, was the di�erence greater than
one standard deviation, so the computational savings made by using a reduced
number of factors could perhaps be justi�ed.

Over all these techniques, however, the greatest �B with any subject was
0.2312, between X13 and S16 (again, the �rst-named author). This compares
with 0.6266 betweenH4 andH18. The average �B between humans and humans
was 0.3464, whereas between humans and machine partitionings it was 0.1067.
The machine techniques reviewed here do provide signi�cantly better than
chance agreement with human subjects, but are a long way from being as
good as the \average" human.
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6 Conclusion

In this paper we have shown that a rigorous assessment of the agreement
between two partitionings of a set of images into unlabelled subsets is possi-
ble. The most important feature of any such measure of agreement is that it
must take into account the agreement expected by chance. We believe that
reports of the performance of image database systems have consistently failed
to do this. The actual value of the expected chance agreement depends on the
model of user behaviour selected. We have shown that the simplest possible
model, which assumes equal probabilities for each subset, does not describe
the measured behaviour of human subjects or machine partitioning techniques
adequately. We have thus proposed the �B statistic, which explicitly takes into
account the subset probabilities for each subject.

Using this statistic, we have found that the agreement between human subjects
is on average 34.64% higher than would be expected by chance, almost 4
standard deviations away from the expected value. This indicates that there
is indeed some shared notion of image similarity, but the value is still a long
way from 100% agreement. There is also much variance in the agreement
between pairs of human subjects: di�erent subjects agree in di�erent ways.

These observations suggest that a truly successful image database system
should attempt to model the individual user, so that the image distance mea-
sure is at least partially learnt. In practice, it is likely that the appropriate
measure will depend not only on the individual user, but also on the genre of
images, and the task which the user is performing.

There is evidence that the human notion of image similarity is at least par-
tially learnt, as demonstrated by the higher agreement between experts than
between lay people. Also, it seems that humans can adapt to an image clas-
si�cation system, and subconsciously adjust their notions of image similarity
accordingly. This suggests that the user will be able to adapt to a image
database system, as well as vice versa.

Measurements of the agreement between human subjects and a variety of dif-
fering machine image partitioning techniques showed that the agreement be-
tween machine methods and humans was much less than that between pairs of
humans. Despite this, the collection of human image clusterings provided an
objective means of assessing the performance of the image clustering systems.
It was possible to conclude that colour features should de�nitely be used, and
that Normalized Principal Components Analysis was the best of the factor
analysis techniques tried. More importantly, the utility of the methodology
has been demonstrated. Larger scale experiments, especially in terms of the
number of human subjects assessed, would be necessary to obtain clearly sig-
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ni�cant distinctions between competing measures of image similarity.

Future work could include experiments in which subjects were asked to assign
images to classes which had had initial seed images assigned to them. This
would allow an assessment using the previously established methodology for
labelled classes. Such an approach would also be more appropriate for assessing
the e�cacy of a similarity measure for responding to query images.

Finally, we reiterate our belief in the importance of gathering such ground
truth for assessing the performance of image database systems. In this paper
we have demonstrated a methodology for analyzing and applying such data,
and, in particular, shown the importance of using statistics which consider
chance agreements.
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Table A.1
Agreement between human subjects on the image partitioning task, as measured by
the � statistic.
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Table A.2
Agreement between human subjects on the image partitioning task, as measured by
the �B statistic.
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Table A.3
Agreement between computer partitionings of the image set, using a variety of factor
analysis techniques, number of retained factors, and images features, as measured
by the � statistic.
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Table A.4
Agreement between computer partitionings of the image set, using a variety of factor
analysis techniques, number of retained factors, and images features, as measured
by the �B statistic.
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Table A.5
Agreement between computer (Xi) and human (Si) partitionings of the image set,
as measured by the �B statistic.
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