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Abstract| This paper adresses the problem of
modeling object segmentation in the visual cortex us-
ing oscillations. The proposed architecture is based
on a network of locally connected FitzHugh-Nagumo
oscillators which receive graded external input. We
show the suitability of such a network to encode the
stimulus since the amplitude of oscillations increases
monotonically as a function of the input in the neigh-
borhood of a bifurcation, while the frequency remains
nearly constant. However, due to the di�usive e�ects
of the Laplacian connectivity, the oscillators tend to
be in phase even when they represent di�erent objects.
Therefore a desynchronization mechanism, which rep-
resents spatial information about the objects, is added.
The overall dynamics are described and simulation re-
sults on real images are shown.

I. Introduction

Recent trends in modeling information processing in
the brain suggest temporal coding as a possible mecha-
nism for concurrently representing features of external
stimuli and for binding the activity of neurons located
in di�erent areas of the brain [5] [14] [12]. This hypoth-
esis has been supported on computational grounds,
as one possible way to overcome combinatorial cod-
ing strategies, when multiple objects are de�ned over
a multi{dimensional feature space [8] [6]. From the
modeling point of view, such temporal binding mecha-
nisms for feature coding can be realized using the idea
of temporal correlations of neuronal oscillations: two
cells encoding a same object establish a relationship by
synchronizing their activities, while two cells encoding
di�erent objects evolve asynchronously.

In practice, most models employ continuous units
exhibiting periodic activity such as the Wilson{Cowan
oscillator, for which a number of analytical results have
also been obtained [18] [1]. However, models employ-
ing the Wilson{Cowan oscillators appear to have sev-
eral limitations, in terms of robustness to input noise
and in the presence of graded inputs [7].

In this paper we propose a three{layer architec-
ture based on an alternative neuronal model, the
FitzHugh{Nagumo oscillator [4] [11] (cf. �gure I.).
The input layer encodes the stimulus, which is a gray{
level image. The second layer is a feature map rep-
resented by an array of FitzHugh{Nagumo oscillators.
The input stimulus is meant to be �ltered by some re-
ceptive �elds, encoding a speci�c feature, such as edge
orientation, color, or shape. For the sake of simplicity
we shall consider a trivial feature map of the same size
as the input layer, directly encoding the value of the
input unit at the corresponding location. Lateral con-
nections in the feature map link every oscillator to its
four neighbours in a Laplacian di�usion scheme. Un-
der some constraints on the coupling weights, oscilla-
tors receiving the same input asymptotically synchro-
nize, independently of their initial conditions. How-
ever, this synchronization property does not garantee
that disconnected objects represented by similar fea-
ture values will evolve asynchronously. In order to
take spatial relationships into account, an attention{
driven desynchronization mechanism ia added. Such a
mechanism consists of two layers: a saliency map and
a perturbation map. The overall system architecture
and dynamics are discussed in the next section, and
simulation results are presented in section 3. Related
and future works are discussed in section 4.
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Figure 1: The system architecture.



II. Dynamics of FitzHugh-Nagumo
Oscillators

The basic oscillator of the feature map is the
FitzHugh-Nagumo neuron model which was directly
derived from the Hodgkin{Huxley model and is de-
scribed in [4] [11]. The neuron's membrane potential
is de�ned by two coupled variables x (excitation vari-
able) and y (recovery variable) whose dynamics are
given by:

�
� � dxdt = �y � g(x) + I
dy
dt

= x� by
(1)

where g is such as g(x) = x(x � a)(x � 1) with
0 < a < 1, and I is an external input current. The
parameter � << 1 controls the speed of variation of
the variable x vs. y, x generally varying faster than y
(in which case the system is called a relaxation oscilla-
tor). The parameters a and b control the asymptotic
behaviour of the system for a given input I as well as
the characteristics of the oscillations when they exist
(period, amplitude and phase). For given a and b, the
qualitative dynamics of the oscillator varies according
to the value of the input I. When I is below some bi-
furcation value Ic, the system asymptotically reaches
a �xed point. Increasing I to Ic causes a supercritic
Hopf bifurcation inducing a limit cycle whose ampli-
tude increases monotonically in I while the frequency
remains nearly constant (cf. �gure II.). More details
on the bifurcation analysis of the FitzHugh-Nagumo
neuron model can be found in [7] [10] [16], among oth-
ers. The dependency between the input signal and
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Figure 2: Amplitude and frequency of the FitzHugh-
Nagumo oscillator for I � Ic ' 0:2 (a = 0:1; b = 0:4).the amplitude and frequency is particularly important
for information encoding. In our study we are inter-
ested in modeling continuous inputs represented by a
gray{level image. In this case, it is essential to estab-
lish a one{to{one mapping between the input and the
period and/or amplitude of the resulting oscillations.
The FitzHugh{Nagumo model satis�es this property,
as can be observed from the monotonic dependency
between the input and the oscillation amplitude (cf.
�gure II.).
Given the above oscillator, we now seek connectiv-

ity schemes capable of synchronizing locally connected
oscillators. In [7] we proved, for the case of a chain,
the following theorem:

Theorem. Given an open chain of N coupled

FitzHugh-Nagumo oscillators f(xi; yi); i = 1; ::; Ng re-
ceiving the same input Ii = I; i = 1; ::; N , and whose

dynamics are described by:

�
dxi
dt = �yi � g(xi) + Ii + �(xi�1 � xi) + �(xi+1 � xi) ; i = 2; :::; N � 1
dyi
dt = xi � byi + �(yi�1 � yi) + �(yi+1 � yi) ;

(2)
with boundary conditions:

8>><
>>:

dx1
dt = �y1 � g(x1) + I1 + �(x2 � x1)
dy1
dt

= x1 � by1 + �(y2 � y1)
dxN
dt

= �yN � g(xN ) + IN + �(xN�1 � xN )
dyN
dt = xN � byN + �(yN � yN�1) ;

(3)
the oscillators asymptotically synchronize with zero

phase shift provided that � and � satisfy the follow-

ing conditions:

8<
:

� > 1
2(1 + 2� cos(�=N ))

� > 1
2(1�cos(�=N))

� � � :

(4)

III. Attention{driven Desynchronization

One consequence of the above results is that amplitude
is the only information available to separate multiple
objects. However, this information may not be su�-
cient to distinguish disconnected objects if they have
the same intensity in the input image. Therefore, we
introduce an attention mechanism which carries spa-
tial information on the objects and selectively modi�es
the phases of the corresponding groups of oscillators.
Such a mechanism is implemented by the saliency and
the perturbation maps of the architecture (cf. �gure II.
). The saliency map consists of a 2D array of feature
detectors aij which receive at a time Ta the amplitudes
xij of the oscillators. The value of Ta must be greater
than the transient duration, and is given by Ta = 3 �T ,
where T is the average period of the FitzHugh-Nagumo
oscillator over the input interval [0:2; 1]. This guar-
antees maximum discriminability among amplitudes.
The activity of a unit aij is de�ned by the convolu-
tion of the oscillator amplitudes with a di�erence{of{
gaussians �lter, corresponding to a common receptive
�eld type in the striate cortex as well as in the tha-
lamus and the superior colliculus. Both regions have
been hypothesized to play a central role in selective
attention and eye movements [2] [3].
Due to the band-pass nature of the �lter, the

saliency map faijg will present a number of peaks, in
correspondence to regions of oscillators having high{
contrast amplitudes with the background. In order to
use this information to generate a feedback signal to
the corresponding oscillators in the feature map, it is
necessary to encode some spatial information about



the salient regions. Therefore, an additional layer of
units pij = (rij; �ij); i = 1; : : : ; I; j = 1; : : : ; J (the
perturbation map) is introduced . These units receive
the thresholded outputs of the saliency map units,
and compute the average polar coordinates (relative
to the image origin) of the disconnected salient regions
. They obey the fast (� << �) di�usion system:

8>>>><
>>>>:

�:
drij
dt = �rij +

1P
mn2N(i;j)

H(amn)

P
mn2N(i;j) rmn �H(amn)

�:
d�ij
dt = ��ij +

1P
mn2N(i;j)

H(amn)

P
mn2N(i;j) �mn �H(amn)

rij(0) =
p
i2 + j2 �H(aij)

�ij(0) = atan(j=i) �H(aij)

whereH is the heaviside threshold function andN (i; j)
is the 4{connected neighborhood centered on (i; j).
In virtue of the relaxation term combined with the
thresholding of the faijg values, the above anisotropic
di�usion system converges to the con�guration where
units located at the background tend to zero (pij !
(0; 0)), and units belonging to the same connected fore-
ground (salient) region R will tend to a same average
value of f(rij; �ij); (i; j) 2 Rg; units located in di�er-
ent regions will have di�erent values.
After convergence, the di�erent values of the pij

units thus contain the necessary information to gen-
erate a feedback term for the feature map oscillators.
This feedback acts on the oscillators dynamics as a
one-time additive perturbation on the (xij; yij) vari-
ables which drives the units belonging to the selected
regions away from their limit cycles, towards di�erent
isochrones. All the units belonging to the same region
will thus remain synchronized (because perturbated by
the same amount), but will be located in a di�erent
region of the phase space from those belonging to an-
other region (cf. �gure 2). In �gure III.simulation re-
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Figure 3: Temporal behavior of the x variable of
four pairs of oscillators belonging to the di�erent fore-
ground objects of the image shown in �gure III..a2.
The oscillators rapidly synchronize. After the pertur-
bation is applied at t = 6, the di�erent groups of os-
cillators are driven towards di�erent isochrones in the
phase space while the background oscillators receive
no perturbation. Oscillators belonging to the same
object are represented by the same line{style.

sults are shown for two real 128�128 gray-level images
representing scenes with multiple objects. The e�ects
of the perturbation can easily be observed from the
correlation diagrams: inter-object cross-correlations
are considerably reduced at time lag � = 0, without
a�ecting intra-object cross-correlations.
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Figure 4: Experimental results for two 128�128 gray-
level images containing multiple objects. (a1, a2)
Input images; (b1,b2) attention maps; (c1,c2) cross-
correlation diagrams between pairs of units in di�erent
foreground objects for t 2 [0; 6] (before perturbation);
(d1,d2) cross-correlation diagrams for t 2 [6; 12] (after
perturbation). For comparison, the cross-correlation
plots between two units in the same object are shown
with 'oo' lines (d1,d2).

IV. Discussion

The present paper adresses a central issue in the tem-
poral correlation approach to visual modeling, which



concerns gray-level image segmentation using continu-
ous oscillators. Several previous studies have adressed
the same issue, among them [13] and [17] used net-
works of Wilson-Cowan oscillators. Their architecture
is quite complex since the input stimulus is encoded
using as many networks of oscillators as there are gray
levels in the input. In fact these oscillators receive
only binary inputs whereas FitzHugh-Nagumo units
described in this paper establish a one to one mapping
between a graded input and the amplitude and fre-
quency of the oscillations. Another highly related work
is described in [15] who considered networks of locally
connected (through the x variable only) relaxation os-
cillators which form groups of synchronized oscillators
competing through a global inhibitor. The local in-
teration of oscillators leading to synchronization and
desynchronization in such networks is mainly due to a
selective gating process, and seems to be sensitive to
random initial conditions.
Several lines of improvements of the present study

are under investigation. The input stimulus to the os-
cillators is being modeled by the response of Gabor
�lters, in order to construct an illumination-invariant
shape representation. The integration of multiple fea-
ture maps is also under investigation.
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