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Abstract. In this paper we adopt a temporal coding approach to neu-
ronal modeling of the visual cortex, using oscillations. We propose a
hierarchy of three processing modules corresponding to di�erent levels
of representation. The �rst layer encodes the input image (stimulus)
into an array of units, while the second layer consists of a network of
FitzHugh-Nagumo oscillators. The dynamical behaviour of the coupled
oscillators is rigorously investigated and a stimulus-driven synchroniza-
tion theorem is derived. However, this module reveals itself insu�cient
to correctly encode and segregate di�erent objects when they have sim-
ilar gray{levels in the input image. Therefore, a third layer connected
in a feedback loop with the oscillators is added. This ensures synchro-
nization (resp. desynchronization) of neuron ensembles representing the
same (resp. a di�erent) object. Simulation results are presented using
synthetic as well as real and noisy gray{level images.

1 Introduction

A considerable number of neurophysiological �ndings suggest the hypothesis
that brain cells encode information not only by their average �ring rate, but
also through the precise timing of their �ring pattern [7] [14]. This hypothesis
has been supported on computational grounds, as one possible way to overcome
combinatorial coding strategies, when multiple objects are de�ned over a multi{
dimensional feature space (binding problem) [9] [8]. The basic idea underlying
most computational models is that of temporal correlation: two cells encoding
the same object establish a relationship by synchronizing their activities, while
two cells encoding di�erent objects evolve asynchronously.

In practice, most models employ continuous units exhibiting periodic activity
In this case, the problem reduces to �nding a network topology capable of impos-
ing appropriate phase shifts in each neuron's activity. The most widely studied
unit model is the Wilson{Cowan oscillator, for which a number of analytical
results have also been obtained [17] [2]. However, models employing the Wilson{
Cowan oscillators appear to have several limitations, in terms of robustness to
input noise and in the presence of graded inputs.

In this paper we propose a three{layer architecture based on an alternative
neuronal model, the FitzHugh{Nagumo oscillator [6] [12] (cf. �gure 1). The
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Fig. 1. System architecture.

input layer encodes the stimulus, which is a gray{level image. The second layer
is a feature map which consists of an array of FitzHugh{Nagumo oscillators.
In section 2 we show that for this model, nice relationships can be established
between the value of the external input and the frequency, phase and amplitude
of the oscillations. The input from the lower layer is meant to be �ltered by
some receptive �elds, encoding a speci�c feature, such as edge orientation, color,
shape. For the sake of simplicity we shall henceforth consider the trivial receptive
�eld, directly encoding the value of the input unit at the corresponding location.
In addition to the external input, the FitzHugh{Nagumo oscillators also receive
input from their neighbours (via local coupling). In section 3 we show that, under
some constraints on these coupling weights, oscillators receiving the same input
asymptotically synchronize, independently of the initial conditions.

This property, although useful to group objects having uniform features,
appears insu�cient to discriminate two or more objects when they possess sim-
ilar feature values. This is due to the fact that synchrony depends only on the
stimulus intensity but not on the spatial relationships such as connectivity and
position in the image. In order to take these spatial relationships into account,
a third layer (which we call the attention map) is added, consisting of an array
of feature detector units which receive an input signal from the oscillators. The
receptive �eld of these units is implemented as a �lter whose impulse response is
the di�erence of two Gaussians having di�erent widths. Its goal is to detect con-
nected groups of oscillators whose average amplitude strongly di�ers from the
background [10]. The attentional signal computed by these units is then fed back
to the oscillators as a perturbation, which allows temporary desynchronization
of disconnected groups of units.

2 The FitzHugh-Nagumo Neuron Model

Before describing the structure and interconnections of the feature map, we �rst
analyze the model used for the basic units, i.e. the FitzHugh-Nagumo oscillator.
This model was directly derived from the Hodgkin{Huxley neuron model and is
described in [6] [12]. A neuron's membrane potential is de�ned by two coupled



variables x (excitation variable) and y (recovery variable) whose dynamics is
given by: �

�:dxdt = �y � g(x) + I
dy
dt

= x� by
(1)

where g is a third order nonlinearity, such as g(x) = x(x � a)(x � 1) with
0 < a < 1, and I is an external input current. The parameter � << 1 controls
the speed of variation of the variables x and y, x generally varying faster than y
(in which case the system is called a relaxation oscillator). The parameters a and
b control the asymptotic behaviour of the system for a given input I as well as the
characteristics of the oscillations when they exist (period, amplitude and phase).
On the other hand, for �xed a and b, the oscillator dynamics varies according to
di�erent values of the input I. Figure 2 (left) shows the system's nullclines for
di�erent values of the external input. For more details on the bifurcation analysis
of the FitzHugh-Nagumo neuron model, the interested reader is referred to [11]
[15].

y = g(x)+I

y
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Fig. 2. (left) phase plane nullclines of the FitzHugh-Nagumo system as I varies: In a)
I = 0 the �xed point is globally stable; in b) the �xed point is unstable and a limit
cycle solution is possible; in c) the �xed point is stable again. The system undergoes
two Hopf bifurcations as I increases from zero. (right) variation of the amplitude and
frequency of oscillation as I varies in a neighborhood of I1. a = 0:1; b = 0:4.

Figure 2 (right) shows the variation of amplitude and frequency of oscillations
in function of I in the vicinity of the bifurcation. The amplitude is monotonic
in I while the frequency is nearly constant. This dependency between the input
signal and the amplitude and frequency is particularly important for information
encoding. When the input is binary (stimulus present or absent) a correspon-
dence is in general straightforward, since one only needs to have a limit cycle for
the stimulus and a �xed point in the absence of a stimulus. To this end, Wilson{
Cowan oscillators appear su�cient [2]. However, in our study we are interested
in modeling continuous input represented by a gray{level image. In this case,
it is essential to establish a one{to{one continuous mapping between the input
and the period and/or amplitude of the resulting oscillations. The FitzHugh{
Nagumo model satis�es this property, as can be observed from the monotonic
dependency between the input and the oscillation amplitude.



3 Synchronization of coupled FitzHugh-Nagumo neurons

In this section, we present the main theoretical result on the stimulus-driven
synchronization of coupled FitzHugh-Nagumo neurons. We prove the following
theorem in the case of a 1-D chain of oscillators which are symmetrically coupled
with nearest{neighbor connections between like x and y units (cf. �gure 3).

i

i

Y i
Y

i+1

XX
i+1

α

β

Fig. 3. Connection topology in a chain of FitzHugh-Nagumo oscillators.

Theorem1. Given a chain of N coupled FitzHugh-Nagumo oscillators f(xi; yi) ;
i = 1; :::; Ng receiving the same input Ii = I ; i = 1; :::; N , and whose dynamics
is described by:�

dxi
dt

= �yi � g(xi) + Ii + �(xi�1 � xi) + �(xi+1 � xi) ; i = 2; :::; N � 1
dyi
dt = xi � byi + �(yi�1 � yi) + �(yi+1 � yi)

(2)

with boundary conditions:

8>><
>>:

dx1
dt = �y1 � g(x1) + I1 + �(x2 � x1)
dy1
dt = x1 � by1 + �(y2 � y1)
dxN
dt = �yN � g(xN ) + IN + �(xN�1 � xN )
dyN
dt = xN � byN + �(yN � yN�1)

(3)

then the oscillators asymptotically synchronize with zero phase shift provided
that � and � satisfy the following conditions:8<

:
� > 1

2 (1 + 2� cos(�=N ))
� > 1

2(1�cos(�=N))

� > �

(4)

Proof. The basic idea of the proof is to show that 8i; r2i = (xi � xi+1)
2 + (yi �

yi+1)
2 tends to zero asymptotically for any initial conditions. Let us �rst consider

the following variable change:

xi�xi+1 = ri cos(�i) ; yi�yi+1 = ri sin(�i) ; i = 1; :::; N�1 ; ri � 0 ; �i 2 [0; 2�[
(5)



Then, we have:

ri: _ri =
dr2i
2dt

=
d

2dt
[(xi � xi+1)

2 + (yi � yi+1)
2]

= (xi � xi+1)( _xi � _xi+1) + (yi � yi+1)( _yi � _yi+1)

= (xi � xi+1)[�(yi � yi+1)� (g(xi)� g(xi+1)) + �(xi�1 � xi)� 2�(xi � xi+1)

+ �(xi+1 � xi+2)] + (yi � yi+1)[(xi � xi+1)� b(yi � yi+1) + �(yi�1 � yi)

� 2�(yi � yi+1) + �(yi+1 � yi+2)]: (6)

Using simple algebra, it is easy to show that,
�(xi � xi+1)(g(xi) � g(xi+1)) � (xi � xi+1)2 = r2i .
By assuming � � �, the following inequalities hold:

� cos(�i) cos(�i+1) + � sin(�i) sin(�i+1) � �riri+1 (7)

� cos(�i) cos(�i�1) + � sin(�i) sin(�i�1) � �riri�1

Therefore, after some developments and simpli�cations, the previous system can
be rewritten in (ri; �i) coordinates as:

ri: _ri = �ri cos(�i)(g(xi)� g(xi+1))� br2i sin(�i)
2 � 2�r2i cos(�i)

2 � 2�r2i sin(�i)
2

+ riri�1(� cos(�i) cos(�i�1) + � sin(�i) sin(�i�1)) + riri+1(� cos(�i) cos(�i+1)

+ � sin(�i) sin(�i+1))

� r2i � 2�r2i + �riri�1 + �riri+1 (8)

Now, let us consider the linear di�erential system de�ned by:

_qi = (1� 2�)qi + �qi�1 + �qi+1 ; i = 1; :::; N � 1 (9)

which can be rewritten as _q = Aq where q = (q1; q2; :::; qN�1), and the N � N
matrix A is:

A =

0
BBBBB@

(1 � 2�) �
� (1� 2�) �

. . .
. . .

. . .

� (1� 2�) �
� (1� 2�)

1
CCCCCA (10)

From the inequality (8), we have _r � _q for any initial condition r(0) =
q(0).Therefore r(t) is bounded by q(t). Since r(t) � 0, to show that r(t) tends
to zero asymptotically, it su�ces to show that this is true for q(t). The problem
hence amounts to �nd conditions under which the matrix A is stable, i.e. its
eigenvalues all have negative real parts. Since A is a triangular Toeplitz matrix
[1], its eigenvalues are:

�k = 1� 2�+ 2� cos(k�=N ) ; k = 1; :::; N � 1 (11)

with �N�1 < �N�2 < ::: < �1. To garantee negative eigenvalues, it su�ces to
impose 1� 2�+ 2� cos(�=N ) < 0, i.e. 1 + 2� cos(�=N ) < 2�. Since we assumed
� � �, this reduces to 1 + 2� cos(�=N ) � 2�, which implies the condition,
� � 1

2(1�cos(�)=N) , and ends the proof.



The synchronizing dynamics of the system may be intuitively interpreted as
follows. For any given initial conditions on (xi; yi), the coupling terms �(xi�1�
2xi + xi+1) and �(yi�1 � 2yi + yi+1), which are proportional to the di�erence
with two neighboring oscillators, are large enough to drive the oscillators towards
neighboring �xed points. Eventually, the di�erence between the oscillators will
decrease below some bifurcation threshold. Then, oscillators with identical inputs
will adjust minor di�erences in their phases due to the coupling term to reach
zero{lag synchronization.

One can readily see from the constraints of the previous theorem that the val-
ues of � and � are monotonically increasing in N . However, simulations revealed
that much smaller values are su�cient to achieve synchronization, and that one
can safely employ � < � < 1. Indeed, the above conditions are su�cient but
not necessary, and better upper bounds may possibly be found. Similar observa-
tions can be made on a result by Campbell and Wang [2] who derived coupling
conditions which are su�cient to synchronize a chain of piece-wise linearized
Wilson-Cowan oscillators.

4 Simulation Results

To illustrate the theoretical results of the previous section, we present a series
of simulations on synthetic and real gray-level images. Figure 4 (left) shows the
�rst image, representing two objects with di�erent gray-levels Ia = 0:5; Ib = 1:0
over a background Ic = 0:0. Figure 4 (right) shows the network dynamics for

Fig. 4. (left) Synthetic image used for the input layer; (right) temporal diagram of
the x variable of the oscillators showing synchronization of two oscillator groups with
di�erent amplitudes.

the xi units from random initial conditions. Each oscillator is connected to its
four neighbours in the feature map as in Figure 3. We can observe three groups
of oscillators, corresponding to the groups of units receiving the three levels of
input. As pointed out earlier, the amplitude of the oscillations characterizes the



level of the input. The group with smaller amplitude corresponds to units at the
background, as well as units at the frontier of the objects. This simulation illus-
trates the suitability of the FitzHugh{Nagumo model and the nearest{neighbor
connectivity scheme. In particular, this scheme appears capable of grouping to-
gether, independently of their initial conditions, units that represent the same,
uniform object, provided that its gray level is di�erent from that of other objects.

Another nice property emerges from the next simulation. In this case, two
real gray{level images were used, presenting a target object over a very noisy
background (cf. �gure 4).Thanks to the di�usive local coupling, the array of os-
cillators appears to increase the contrast between the object and the background,
by smoothing regions of high spatial frequency and increasing the amplitude of
large groups of neighboring oscillators receiving uniform input.

Fig. 5. Segmentation results on real 32 � 32 noisy images shown at the top. The two
images at the bottom represent the corresponding amplitude maps of the 32 � 32
arrays of oscillators, which show synchronization of oscillators coding the object and
desynchronization with the background. Note that due to di�usive local coupling, only
large groups of neighbouring oscillators which receive similar input synchronize.

5 Desynchronization by Selective Perturbation

As shown in section 2, the information carried by a FitzHugh{Nagumo oscillator
lies in its phase and amplitude, whereas the frequency remains approximatly
constant. Also, we have shown that, for the case of nearest{neighbor coupling, the
oscillators of all units tend to be in phase. This leaves the amplitude as the only
information available to separate multiple objects. However, if two disconnected
objects have the same intensity in the input image, the two corresponding groups



of oscillators will actually synchronize and have the same amplitude. In this
situation, the amplitude is no longer su�cient to separate objects.

Therefore, we introduce an attention mechanism which carries spatial infor-
mation on the objects and consequently selectively modi�es the phases of the
groups of oscillators. Such a mechanism is implemented by the third layer of
the architecture (cf. �gure 1). It consists of an array of feature detectors which
receive at a time Ta (greater than the transient duration) the amplitude map of
the array of oscillators.

The feature detectors are de�ned by the di�erence of two Gaussians, which
de�nes a very commonly found receptive �eld type in the striate cortex as well
as in the thalamus and the superior colliculus. The two latter brain areas have
been hypothesized to play a central role in selective attention and eye movements
[3] [5]. The goal of the attention layer is to detect blob{like groups of feature
map oscillators having similar amplitude to each other, and di�erent amplitude
from the surround. Let us consider 2-D arrays of units, of dimension I � J . The
activity of unit ai;j at position (i; j) is thus de�ned by the convolution of the
oscillator amplitudes with the di�erence{of{gaussians �lter f :

ai;j =
IX

m=1

JX
n=1

xm;n � fi�m;j�n

fi;j = exp�
i2 + j2

�2
� c � exp�

i2 + j2

d�2
; (12)

where c is a weight guaranteeing equal integrals of the two gaussians over the
bounded, discrete image domain, � is the width of the on Gaussian, and d is
o�/on ratio.

Due to the band-pass nature of the �lter f , the attention map faijg will
present a number of peaks, in correspondence of regions of oscillators having
uniform amplitudes. We can thus represent the object's shape by simply thresh-
olding the values of a, thereby segmenting them from the background. However,
we still need to distinguish the selected regions from each other. To this end, it
is necessary to encode some spatial position information in an additional layer
of units pi;j; i = 1; : : : ; I; j = 1; : : : ; J . These units, which we call perturbation
units, obey the following di�erential system:(

"
dpi;j
dt

= �pi;j +
1P

m;n2N(i;j)
H(am;n)

P
m;n2N(i;j) pm;n �H(am;n)

pi;j(0) =
p
i2 + j2 �H(ai;j)

where H is the heaviside threshold function and N (i; j) is the 4{connected neigh-
borhood centered on (i; j). In virtue of the relaxation term combined with the
thresholding of the fai;jg values, the above anisotropic di�usion system converges
to the following con�guration: the value of units located at the background is
pi;j = 0; units pi;j belonging to the same connected foreground region R will tend

to a same constant value, equal to the average value of f
p
i2 + j2; (i; j) 2 Rg;

units located in two di�erent foreground regions will have di�erent values (cf.
�gure 5 (left)).



After convergence, the di�erent values of the displacement array thus contain
the necessary information to distinguish di�erent groups of units. Their values
are used as a positive feedback term to the corresponding units f(xij; yij)g in the
feature map layer. This feedback acts on the oscillators dynamics as a pertur-
bation which drives the units belonging to the selected regions away from their
limit cycles, towards di�erent isochrons. All the units belonging to the same R
will thus remain synchronized (because perturbated by the same amount), but
will be located in a di�erent location in the phase space from those belonging to
another region R0.

Due to the global synchronization properties described above, the e�ects of
the perturbations are limited in time. However, during a transient period, the
feature map oscillators will be characterized not only by their amplitude, but also
by their phase. We have thus obtained a way to discriminate, through temporary
perturbations, di�erent objects even if they receive equal external inputs.

Figure 5 (right) shows the temporal behavior of three groups of oscillators,
with the perturbation occurring at t = 9. In this case, the input signal is the same
of �gure 4, although the two foreground regions have now been set to the same
value. It can be noticed that, without altering the dynamics of the background
oscillators, the units of the two other groups are shifted to di�erent phases.

Fig. 6. Temporal behaviour of units of the attentional layer (left) and oscillators of the
feature map (right) before and after perturbation at t = 9.

6 Discussion

The present paper adresses a central issue in the temporal correlation approach
to visual modeling, which concerns gray-level image segmentation using contin-
uous oscillators. Several previous studies have adressed the same issue, among
them [13] and [16] used networks of Wilson-Cowan oscillators. However, their
architecture is quite complex since the input stimulus is encoded by employing
as many networks of oscillators as there are gray levels in the input. In fact these
oscillators receive only binary inputs whereas FitzHugh-Nagumo units described
in this paper establish a one to one mapping between a graded input and the



amplitude and frequency of the oscillations. We have shown nice synchroniza-
tion properties of FitzHugh-Nagumo oscillators, using simple nearest-neighbor
connections. We also introduced a selective perturbation approach to desynchro-
nization of oscillator groups encoding di�erent objects. The basic ide is to encode
a spatial feature in the oscillators dynamics as a perturbation which drives dis-
connected groups of oscillators to di�erent isochrons in the phase space. Several
lines of improvements are under investigation. The isotropic connectivity be-
tween oscillators should be ameliorated in a way which reects the contrast vari-
ation in the input image. This would require a dynamic coupling approach based
on anisotropic reaction-di�usion operators. We are also analysing the isochrons
of the system (2) in order to establish a relationship between the perturbation
values and the phases of oscillators.
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