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Abstract Humans and animals areteemely skilled at using
visual cues for inferring information about theivigan-
ment. This &ct has inspired mgncomputer vision re-

Computer vision offera number of témiques that can  searchers, not only in the attempt to mimic the human

be used in the conteof pictorial information systems.  visual system, it also by dfering concrete pieces of in-

To motivate this point of we we fisst present the basic  formation regarding the possible organization of a com-

issues imolved in computer vision and in multimedia in- puter vision system. Hints from neurw]’[ﬂogy and

formation systems, and emphasize théemifices be-  cognitive psychology abound (e.g. [14] [36] [38] [57]

tween these domainse\then outline the contritions  [58]). There are for example experimental observations,

that computer vision can make to the development of efsych as theakt that object recognition is actésl in a

ficient multimedia information systems, especially for few 100ms., leading to conjecture that less tharwa fe

handling queries by visual example (QVE). tens neural ycles sufice to perform identification

In the second part of the papeve concentite on the  ([48]). It is also speculated that the human “model-base”

matterss of archiving and etrieving imagjes fom lamge might contain from 30’000 to 100’000 basic models

databases, in the case of QVE. An aph is proposed  ([6]). Despite this high numbehumans can recognize
that relies on two concepts, nametyavance and focus-  objects under almost gmffine or projectie transforma-
of-attention. These mieanisms allow to locate and se- tion. From a more general perspective, neurophysiology
lect the most pertinent informationrom images. Thg and psychology he rewaled that the human visual sys-
can be used at the irga archival staggto automatically ~ tem is structured into separate padly®, linking hierar-
determine whic parts of the imge should povide chically oganized modules that perform specific
meaningful indices to be compiled into the gmaccess  functions. The role of mas& feedbacks is mo ac-
tables. Releance and focus-of-attentioneaalso impor- knowledged as, of course, the importance of parallel pro-
tant at the retrieval stage, to efficiently select from a da- cessing.

tabase the imges that best maftca given pictorial It is often recognized that despite initial hopes, com-

query. puter vision has only achied a limited success. Al-
though there are monumerous applications of image

. . analysis and vision techniques in research, industrial and

1. CompUter Vision for Multime- daily life environments, the ultimate objee#i of realiz-

dia Information Systems ing a general purpose computer vision system is still

very far away The goal of reproducing most of the hu-
man visual abilities thus remains elusive.

Computer vision is hard for mameasons: the prob-

c ter vision (CV) ai ¢ NVZing | data t lem is mathematically ill-defined, computationally in-
omputer vision (CV) aims at analyzing image data to tiactable, and, lastub not least, informationxéracted

understand the structure and content of scenes (e.9. [23] )\ (eal data is hi :

) ghly corrupted by noise ([25] [56]).
[2.8] [33.] [38)). Images are orgamzeq along two or three Finding a general mathematical formulation of the vi-
dimensions, the third dimension being depth (e.g. [30)), jqp, problem still appears to be out of reach. The major

or t'.me asin the case of video sequences (e.g: [19]). Th‘%urrent issue is to confront comgiy by reducing input
.baS'C pa“”?d'gm n modgl-based compuyheron is the information as much as possible, and by using taprdo
|nt_erpret.at|on of obseations by comparison and mat- constraints and feedback loops as early as feasible in the
chmg with knavn models of the objects to be recog- recognition process. Another trend consists of theecti
nized. selection of input data, foxample using meéng cam-

1.1 Computer Vision



era heads (e.g. [1]). Finalin order to be able to handle
real and poor quality data, itwdecomes clear that do-
mains of application havto be well specified, and heu-
ristics used as often as possible.

1.2 Multimedia Information Systems

Multimedia information systems (MIS) aim at andhi

and retriging data from multiple sources of fdifent
types: tat, music, speech, images (diags, graphics,
photographs), video sequencessemwies) (e.g. [22]
[31] [50] [60]). MIS research is multidisciplingrgs it
involves database management, signal processing an
computer vision, t& and natural language processing,
networking, human-media interaction.

The major operations that occur when dealing with a
MIS are: the construction and precompilation of the da-
tabase in order to optimize future searches, search ope
ations to answer specific queries,wsing and selection
amongst answers, and possibly search refinement. Ml
are particularly well suited tocploratory “data mining”,
that is the search for reient pieces of information in
large knavledge repositories. The role of the human user
in such operations is fundamental, atisus stages: for
selecting the appropriate data to be archived, for formu-
lating and refining queries, and for tuging amongst re-
sponses to these queries.

1.3 Image and/or Spatial Databases

Images, be thestatic or dynamic video sequences, are
certainly at the heart of @MIS. There is currently a dis-
tinction between spatial databases (e.g. [27] [37]) and
image databases (e.g. [26] [29]), the former dealing
more with the topological structure of the images, and
the latter with their pictorial or semantic content. As
techniques corerge, this distinction will certainly be-
come deprived of practical significance.

A central problem in information retxial from picto-
rial databases is the handling of queries (e.g. [4] [13]
[32] [50]). Structured, symbolic querigsla SQL are
well suited to MIS where & descriptions of imagexe
ist, for ekample in the case of paintings. Such queries

seem harder to use in the case of images with unrestrict

ed content. In such situations, it is kwothat purely

structural approaches to object recognition perform sat-

isfactorily only in \ery restricted situations, such as for
the analysis of line dvaings, characters, or geographical
maps (e.g. [49]).

The intuitve nature of dataxploration is better suited
to fuzzy than to symbolic queries. Such queries can b
divided into queries by subjeeti descriptions (QSD)
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€

and queries by visualxamples (QVE) ([35]). Wh
QSD’s, the user inputs a rough description, not necessar-
ily pictorial, of the desired information. The query can
for example consist of a series of adjees describing
certain subjectie global attribites of images (such as
“rather geometrical”, “widly colored”, etc. [35]). In the
case of QVES, both objectie and subjecte pictorial
criteria are praided to the system. Objeeti criteria are
for example the dominant hue of the image to be re-
trieved, or the @erage size of the objects. More subjec-
tive criteria may foreample be the dominant orientation
of the patterns, or a hand-dna sketch of a particular
ahape (e.g. [41)).

More and more xamples of pictorial databases are
appearing, commercially or within the research commu-
nity. Regarding static images, applications can be found
in the folloving domains: medical (Picture Arefig
and Communication Systems A®S, e.g. [46]), geo-
graphical (Geographical Information Systems - GIS [34]

§49], earth-space obsetion [18]), museums and librar-

ies (e.g. [5] [12] [35] [43] [47]), security (fingerprints,
faces [3] [42]), artdict catalogs, home computing (han-
dling of photographs), news agencies, etc.

Rearding video sequences, applicationg/mevolve
around automated channel selection, sillance, or
mavies on demand. It will fonemple be possible to au-
tomatically braevse through all channelsfefing a soc-
cer match or a sumo wrestling contest ([15] [51] [61]).
Such applications will certainly change focus with time,
as TV channels will more and more be accompanied by
data channels communicating the nature of the informa-
tion being broadcasted. It will then not be anymore nec-
essary to use completechniques to locate channels
offering a specific contentubrather to be able to elim-
inate unwanted information (such as commercial ads!).

MIS handling pictorial information have to deal with
a number of data types (e.g. [22]).WRhBinary data can
be pixels, voxels, Binary Lge Objects - BLOBS, video
segments. In order to analyze such data, structures for
representing image primitts and attribtes of \arying
degrees of compldty are required. In addition, it is nec-
essary to represent more global pieces of information,
typically geometric, contextual or temporal (e.g. [21]).

1.4 Contribution of Computer Vision to
Multimedia Information Systems

Seweral similarities rist between CV for objects loca-
tion and recognition in images, and CV for MIS.\@®b
ously most basic techniques are the same. Also, in both
cases, multiple data types/#eao be handled, and spatial
queries to be processed.

There are heever a number of diérences between



CV for object recognition and for MIS. The major one is
certainly the importance of human interaction in CV for
MIS. The user is aate, and is able to reformulate que-
ries according to the results. In addition, aadpnimpor-
tantly, there is no need to pride a perfect answer to a
given search; seral choices can be\wgin, amongst
which the user will brase. Another dference is that an

image archie is not an object model-base, as could be

obtained from a CAD/CAM design system. A complete,
detailed representation is in general natilable for de-
scribing the images in the arehi Finally in MIS, it is
conceiable that information be distrited into seeral

repositories, whereas in object recognition there is usu-

ally only one modelbase.

What is then the role that computer vision techniques

can play in MIS? W see significantly mecontributions
of CV to MIS in the case of queries by visuahmples
(QVE), and possibly in the case of queries by subjecti
description (QSD).

First, at thearchival stage, the database has to be pre-
compiled in order to optimize further searches. This in-

volves etracting the most rel@nt primitves from the
images, and oanizing them ([11]). An additional prob-
lem is the automatic selection ofywwords in order to
build textual indegs ([24] [59]). Second, concerning the
human-media interactionslue to the highly interase
and human-controlled nature of MIS, computer vision

sual &kamples in terms of retwable image primities
and attributes. Finally, at tmetrieval stage, vision tech-
niques hge to be used for answering pictorial queries. In
summary only computer vision techniques can\pde
methodologies that allo search by content in pictorial

comparying image data. This process requires manual
image or video annotation, which may be tediousy,slo
or too e&pensie. In order to impree the current sys-
tems, automatic generation ofteal or symbolic de-
scription is thus necessaffhis will certainly be a &y
factor for the deelopment of computer vision tech-
niques for multimedia applications.

Relevance- and Attention-based
CV for Pictorial MIS

2.

2.1 Handling Queries by Visual Examples

Queries by visual examples can be divided into two cat-
egories global andstructural Queries in the first cate-
gory are typically based on color orxtere. For
specifying a global color queryhe user selects one or
more dominant colors in Hue-Saturation-Lightness
(HLS) space, as well as the relatipercentage of each
color that the retrieed images should contain (e.g. [35]
[41]). For textural queries, the user may specify domi-
nant orientations, or measures of atfiof the textures

to be retriged (e.g. [4] [42]). ¥rious traditional image
analysis methods areailable for handling such global
queries. Current &frts aim at deeloping egonomic

techniques might be necessary to translate queries by yiuser interdces, as well as optimizing the search procedu-

re ([17]).

More difficult is the matter of handling structural que-
ries, where the user prides (possibly by draing) a
rough sktch of the “shape” that must be found in the da-
tabase (e.g. [3] [4] [13] [24] [35] [41] [42]). In this case

MIS. The problem is a complex one, not only due to the global techniques cannot be applied, since each shape

need of interpreting fuzzy search criteriat blso since

defines a relational structure that must be spatially local-

quite dissimilar data and models must be matched, andZ€d in the image. df each component of the shape, a

because of the &fiengy constraint ([17]). Only a lge
use of domain heuristics will alloto satisfy all these re-
quirements.

Interface design is usually agiected issue in the de-
velopment of a CV system for object recognition. In the
contt of MIS, care has to be tak to build multi-mod-
al, intuitive interbces, as users will certainly not hery

correspondence must be found with a prieitin the
matching image, and the consistgnfall the spatial re-
lations between these primviéis with respect to the
structural query must betified. This can be formulated
as a graph matching problem, which is\wnao be NP-
complete.

In order to mak this query mode feasible in practical

computer-literate. Interesting developments for example@pplications, this general-case confile must be re-

revolve around automatic gesture recognition for inter-
facing with a computer system ([55]), in the use of virtu-
al ervironments ([16]), or in speech recognition and
natural language processing.

Amongst the &rious pictorial MIS gisting or under
dewelopment, most makonly a parsimonious use of im-
age analysis or computer vision techniques. é&am-
ple, in medical RCS or museum applications, queries
are generally answered on the basis »f tecords ac-

duced through some heuristics. The possibility of inter-
action with the user (cf. 81.4 al®) clearly relags the
constraint of finding the perfect match, andafdfor
multiple partial responses, amongst which the user may
browse. Still, three basic problems can be identified for
handling structural queries:

a) etracting basic image primigés and ranking
them according to a measure of “quality”;

b) locating and describing the most “interesting”



structures in the image; rangement of simple teks is called @omple token

c) finding a correspondence between the structural T; = {TRY - T . A complex token is therefore a
query and the primitivesceacted at compile time from ~ Structural entitydescribed by its componentsdseents,
the images in the data-base. and/or arcs, and/or g®ns) and hang its ovn coordi-

In the folloving, we propose a three-steps sggttor ~ Nate system. Completokens are used for qualitei
solving these problems. At each step, heuristics are inmatching of objects with models, which is an operation
troduced to greatly reduce the computational corigle ~ tYPical of queries by visual examples (cf. §2.4).
of the whole matching process: For research purposes, wevhaonstructed an artifi-

a) ranking of image primities by arelevancemea- cial database of which representatimages are shm
sure. This allas to choose the “best’ primits on in Figure 1; thg are 256« 256 color pictures of multiple

which to start the matching process, and to greatly prune?™D Objects (or 3-D objects presenting a stable 2-D

the search space; view), lying on compl®, textured backgrounds (gift
o — - wrap-paper). This type of images represents fecdif

b) locating "attention rgions” containing structures testbed since the highly textured background produces a

of interest in the image, by means dbaus-of-attention SS9 -
; : : large amount of primitives. In addition, the patterns that
mechanism. This also leads to a great reduction of the

: . . . .. compose the background interfere with the dooeind
search space, since it permits to isolate groups of primi-_, . . .
. : . . objects, so that no classicgseentation procedure can
tives likely to belong to a single object; . . L . )
. oo i . provide reliable primitves representing these objects
c) using fst indaing techniques for recognition,

) ) > . (e.g. Figure 2, top, for segmentation examples). This re-
such as hashing methods. This requireadf out@ri-  go5rch database currently holds about G@rifit shape

ability of object appearances due to changes in scale ang, ; jels superposed on feifent backgrounds, yielding

rotation. _ . about 200 composite images. Each image contains
In the rest of this papea general franveork is pre- > 1 objects, each of which is presented at a different ro-
sented for the three steps described above. tation, position, and scale factor.

2.2 Relevance

Recognizing objects from a set of image priveisi is a
search problem ofx@onential compbety in the general
case ([25] [56]). A major challenge in computer vision is s
therefore to select information that is relevant for recog-
nition (e.g. [1] [10]). Significant &brts currently aim at
developing efficient visual inding schemes as a coarse
but rapid preliminary recognition step ([20] [54]). Such
schemes rely on finding thosenMé&ey, orrelevant fea-
tures that will drastically reduce the comyte of the
search. A first problem is to find these features iast v Figure 1: Typical samples from the current da-
pool of image primities. An additional issue is the im-  tapase of 200 images (originals are in color).
possibility to perfectly segment the target object: primi-
tives are distorted, brek or simply missing. Finallyt The line sgment atraction is performed using a stan-
is difficult to s@regate object primities from back-  dard algorithm. A filter is then applied to reveose-
ground ones. In this subsection, the definition and meaments shorter than a certain threshold (Figure 2.a, top).
surement of relevance values ([7] [8] [9]) is presented. Circular arcs are obtained from a least-squares fit to the
Let an image (or video frame) under consideration bechains preided by the Cannedge detection algorithm
segmented int® classes of primities, such as line ge (Figure 2.b, top). The gion sgmentation algorithm is
ments, circular arcs, andgiens. The number of dédr- based on two separate region growing mechanisms, that
ent primitve types is denoted by = 1...P, (here operate on the RGB color input image as well as on the
P = 3). Let asimple tokertP be a particular primitve ~ Hue and Saturation planes. The results of the d@-
of typep. Let atoken mapgMP be the set of all tans of mentations processes are then fused, keeping the largest
type p etracted from the image, together with their at- regions when werlapping is detected. The final result
tributes and spatial relationships. consists of a single region map (Figure 2.c, top).

Objects or items of interest in an image may be com-  For each simple tan tP of typep = 1...3 (line
posed of groups of simple tels; one such local ar- sements, circular arcs,gmns) etracted from the input




image, the relevance(tP) O [0, 1] is defined by [7]:

1)

where r(t1P) and s(tP) are respeotely thereli-
ability and thesignificancemeasures of? , detailed be-
low. High reliability indicates that a tek is a
meaningful entity, unlikely to havbeen generated sim-
ply by s@mentation artdicts. The significanceaiue
measures the uniqueness of aetokn the image; it is
maximum when the attrites oft? mak it unique in its
type. The reliability and significance measures are ob-
tained by analyzing some attiifes computed for each
primitive; the attribtes emplged for reliability and for
significance are detailed below.

The attributesAP(t) used to compute the reliability
of a token 1P depend on the tek mapMP to which it
belongs. Br line sgments ¢ = 1), the two attritutes
Al(tl), r = 1,2 are length and contrast. gReding
circular arcs, the four attrlill)esAr2 s = 1...4 areradi-
us length, arc length, contrast, fit errBimally, for re-
gions, the reliability attributeAr3 r,=1...3 ,arearea,
awverage contrast, and standargid#gon of the color dis-
tribution.

The attritutes A?(TP) used to compute the signifi-
cance of a toén also depend on its typeorHine seg-
ments, the tw attributesA(t!) s = 1,2 are length
and orientation. Rgarding circular arcs, the three at-
tributes A§ ,s = 1...3 are radius length, arc length,
turning angle. Finallyfor regions, the tw significance
attributesAg’ S = 1...2 , are area, and average intensi-
ty.

The reliability of a gren tokentP is the normalized
(over the whole token ma@P ) sum of all its reliability
attributesr defined for its primitive tyge

r(1P) = TAPTP)/ S S APCTP) .

p(tP) = r(tP) I6(tP) ,

)

The significance measure is obtained by computing
the sum of squared ffrences of a tadn’s attritutes
with those of the other tokens of the same type:

2
S(tP) = 3 T (AR(TP) - AR(TP)” . 3)
S JZi

Results of the rel@nce computation are presented in
Figure 2, bottom. This figure she that releance al-
lows to assess the respeetfimportance” of tokns of a
given type.

@ (b)

I-j

Figure 2 primitives and relevance measures
p(TP) . (Top) primitives extracted from the in-
put image shown in Figure l.a: (a) line seg-
ments; (b) arcs; (c) regions. (Bottom) representa-
tion of the relevance measures (darker pixels for
tokens of higher relevance).

Relevances are computed independently for each type
of primitive p. In order to obtain rel@nce alues that
may be compared across all primditypes, the initial
relevances are statistically redistied in [0,1] by sepa-
rate histogram equalizations independently performed
for each p. This yields absolute elevance values

p(tP)
p(tP) - p(TP)OI0,1] = Edlp(tP)] , 4

where equalizing function&q[ ¢] are learnt for each
type of token, ogr a set of similar images. A simple to-
ken of typep therefore has the same a-priori probability
to be assigned a@n releance as another tolen of
type p' # p. After equalization, toéns of allP primitive
types are raréd according to theip value. Using this
relevance esluation, it is then possible to assess the rel-
ative “importance” of each image prinvié for recogni-
tion, and in consequence to igtate primitves of
various types.

2.3 Focus-of-attention

The visual attention module simulates the capability of
biological visual systems to rapidly detect and locate
“interesting” parts of a static retinal image, in order to re-
duce the amount of data for object recognition [39] [40].
Se\eral criteria are used by the human visual system to
ewvaluate the importance of a certain stimulus in the im-
age. Some of them, described here, can be characterized
as bottom-up, or data-gten. Thg are obtained by com-
puting measures of salignby comparing information
extracted at each location with the rest of the image. Oth-



er criteria, rather top-den, involve some préously- knowledge about objects of interest, the results success-
stored knowledge.d¥ instance, similarity of the stimu- fully detect “irregularities” in the image, which corre-
lus with the shape of objects that are important for a cer-spond to objects that clearly stand out of a corjple
tain task may be used, and/or their spatial relations withtextured background. In the cortef pictorial MIS, this
other objects (see [39] foxtensions of the bottom-up mechanism can be used to determine which are the “in-
algorithm to this type ofop-down information). teresting” objects or parts of images thatéheo be used

for archial or retrieval. Furthermore, in case of retri,

it can be used to determine the mostvahe components

F'ma&"c'ma&\ of the image query that must be found in the database.
RG | : : g . S2lIENC
: . . map
image /(
F-mag-C-mar integration

process

Figure 3 the bottom-up visual attention module.

The bottom-up subsystem is structured into three ma
jor stages, depicted in Figure 3. First, multiple retino-
topic featue maps (F-mapd FK, k = 1...K are
extracted from input images. The choice of these maps
reflects some image properties that are computed in the
visual corte. Some of them represent chromatic infor-
mation, and are obtained through color opponditters
red—green_ and.blue—yellow..The oth_er maps represent If M > 1 regions are detected by the attention system,
achromatic, high-frequegcinformation, and are ob-  mytiple objects of interest are assumed to be present in
tained through a bank of oriented, Gaussian 1sta@eri  he scene. In order to reduce the computational comple
tive filters. Thg encode information about the local edge ity of the following processing stages, the image can be
orientation and magnitude, as well as local curvature. split into M patches. In this ay, only the information

The second stage of the attention system is representincluded in one patch is used for indey at a gien
ed by the etraction of theconspicuity maps (C- time. The results of the splitting procedure, implemented

maps) CK, one for each feature tyjxe The conspicuity through a grass-fire algorithm, are shown in Figure 5.
maps represeri{  bottom-up measures of interest in the

interval [0,1], at each location of the image. These mea-

sures are computed by amiving the feature maps with I - ! h 1l / @
a bank of difference of oriented Gaussian filters, at mul- | T

tiple scales. The conspicuity m&¥ is then obtained by - % % = | hﬁ
computing the squared response at each location, and by =

taking the local maximum across fdifent orientation (@) ®) © @

and scales. (see [39] for more details). o Figure 5: splitting the image according to the re-
In the third stage of the system, the conspicuity maps gyts of the attention mechanism, on the image

Figure 4 results of the attention system on some
images of the database.

are intgrated into a singlealiency mapdefined as the shown in Figure 1.a; (a) result from the relaxa-
average sum of the C-maps. Wever a simple gerage tion process; (b) attention regions; (c) objects’

sum directly computed from the original C-mapsud separation; (d) final patches.

awverage out all salient locations, rather then clearly de-

tecting them. Br this reason, an iteraé non-linear re- The last stage for focalizing on the information neces-

laxation algorithm is first applied to all C-maps. The sary for accessing images or recognizing objects, con-
updating rule is obtained by minimizing an energy mea- sjsts of weighting the initial refance values according
sure, which has the effect of reducing noise, and enforc+o the location of the masks obtained by the focus of at-
ing regions that are active throughout multiple maps. At tention mechanism. A proximity measw
convegence, a binary mask is obtained by thresholding n(t;) O[O, 1] is computed for each primit T; , with
the saliency map in the middle of the range [0,1]. respect to the center of gravity of the attention region to
Figure 4 shas results obtained by the system on dif- which it belongs.mi(t;) is maximal for close primites,
ferent types of input images. &v without ag prior and decreasesxgonentially) for more remote ones (cf.



Figure 6).

-
® &

@ (b) (©

Figure 6: gating primitives from Figure 2 (top)
with the proximity measuret(t;) of primitives

to the center of each attention region (darker
grey levels for shorter distance).

The relevanceﬁ(Ti) 0[0, 1] ofasingle toknt; is
finally adjusted to tak into accountr(t;) , yielding
p(r) O[0, 1] :

p(Ty) = (P(T) + (1)) 2 . (5)

Figure 7 shars the most characteristicggaents and
regions, i.e. those with the higher relevarjfg;)

The etension of the presentank to the handling of
video sequences is described wisere ([23] [40]): us-
ing similar mechanisms, mimg objects can be detected
during an alerting phase, and tradikby means of a Kal-
man filter whose stateegtor describes positional fea-
tures, such as a convex hull or a spline representation.

&

(@) (b) ©

Figure 7: final relevancep(t;) for the individ-
ual objects. (a) Line segments for the first object;
(b) arcs for the second object; (c) regions for the
third object (pixels darkness proportionalfto ).

2.4 Matching and indexing

In QVE, inding one or more pictures from the image
database implies the ability to (rapidly) match a structur-
al description preided by the user with the stored data.
Various approaches exist for structural indexing, e.qg. [2]
[10] [20] [25] [30] [54]. In order to benefit from the rel-
evance and focus-of-attention mechanisms, v fex-
perimented with tw different matching and inding
stratgies, both operating with the compleken struc-
turesTj introduced in 82.2. The strate described be-

low uses non-hierarchical compglgokens; in other
words, each ingidual object is modeled as one comple
token ([45]). Another stratgy, described elsehere [8],
allows for each pattern to be described by a hieyaoth
complex tokens.

In order to generate thgothesis of a compteoken
T., the most relant simple toknsT; extracted from
the image (Figure 7) awgtite a local, purpog grouping
process. This grouping process searches amongst the
other highly releant simple tokns those that euld
compose one of the stored compl®kens from the
model base. Gen an initial actiating tolen that indres
an object model, the problem is to find other privesi
that satisfy the geometrical relations included in the ob-
ject model. To this end, the coordinate system of the ac-
tivating primitive is first selected; the rotation and scale
transformations specified by the relation parameters are
then applied, leading to a formulation of the object mod-
el compatible with the activating primitive. The scene is
finally searched for the missing primitis. This also al-
lows to recoer poorly sgmented data, becausepecta-
tions about missing tans locally redirect a me
segmentation with optimally defined parameters. Using
this approach, a recognition rate of 100%svachieved
on the training set of 60 shapes (objects without cample
background), and 80% of the testing set (series of 200
composite images). Errors were due to incorrect regions
from the focus-of-attention (5.7%), inaccuratgreen-
tation (2%), incorrect recery of the rotation angle
(8.3%), and miscellaneous, such as objects too similar
(4%). This matching and ingimg approach is wariant
to rotation, scale, translation, and isusebto disturbing
background patterns orgraentation errors. Extensions
to projective invariance are underway ([53]).

In order to use this approach in the cahi QVE,
all images stored in the databaseeht be processed as
described in subsections 2.2 and 2.3. The most pertinent
primitives are thus located, and their valece quanti-
fied; these primities constitute the model compleo-
kens on which query patterns will have to be matched.

3.  Where do we go from here?

The intgration of relgance and attentional mechanisms
lead to a general framerk that allevs to fuse data from
different sources, rewer from poor sgmentation, and
handle uncertainty in an uniform manner. The relevance
measure alls to detect the most pertinent primds,
quantifying their “importance” for recognition. The fo-
cus-of-attention spatially locates the most salient fea-
tures in an image, and filters out irrelevant primitives.

In the cont&t of MIS, the releance and attentional



concepts can be used for images amlhimages retrie
al, and for human-media interactiororkmages archi-

agement system for the interaetiretrizval of faces”,
IEEE Trans. on Knwledge and Data Engineering, 5, 4,
1993, 619-628.

val, these concepts allow to select important features, to[ 4]
rank them according to their pertinence, and to locate
items of interest in the images. It is then possible to use
h most important item irohg k for -

t[ esg ost impo ta. t t.e s as nhg €ys for access [5] H. Besser‘imaging: fine arts”, J. Ame6oc. for Informa-
ing pictures. Rgarding images retnal, relerance and tion Science. 42 8. 1991. 589-596.

attentional mechanisms appear as general paradigms fqg] |. Biederman, “Human image understanding: recent re-
exploratory data mining, that prime a frameork for search and a theory”, Compisién, Graphics and Image
qualitative indging and matching which can be used for Proc., 32, 1985, 29-73.

R. Barber W. Equitz, C. Rloutsos, M. FlicknerW. Ni-
black, D. Petkovic, P. YankeiQuery by content for lae
on-line image collections”, IBM Research Report, RJ
9408 (82660), June 29, 1993.

. : . J.-M. Bost, R. Milanese and. Pun, “lemporal prece-
QVE and possibly for QSD. Finallyegarding human dence in asynchronous visual isde”, Proc. 5th Int.

Conf. on Computer Analysis of Images andttérns
(CAIP’93), Budapest, Huragy, Sept. 13-15, 1993, 468-
475 (D. Chetverikov and 8. Kropatsch, Eds., Springer

media interaction, relevance could be used in two ways.

First, at the input of compteconjunctive queries, users
could be askd to preide a releance &ctor together

Verlag, Lecture Notes in C.S. 719, 1993).

J.-M. Bost, “Active search for visual ind@ng in cluttered
environments: from rel@nce to delays”, Ph.D. Disserta-
tion, No. 2656, University of Geneva, December 1993.
P.-Y. Burgi and T Pun, Asynchronous image analysis:
using the relationship luminance-to-latgno improve

with each component of their request. Second, for pre-g
senting results to the useelevance could be used to
rank the images retied from the database with respect

to the query.

The results of the proposed techniqueenbeen de-
scribed in the conig of an artificial, still compbe image
database. Our currenbvk consists of the inggation of
these concepts into an images aritly and retrigal

segmentation”, J. Optical Soc. of America A (JOSA), 11,
6, June 1994, 1720-1726.

[10] A. Califano, R. Mohan, “Multidimensional ingimg for

recognizing visual shapes”, IEEEahs. RMI, 16, 4,
1994, 373-392.

system, applied to news photographs and to textile sam{11] T.P_Caudell, S.D.G. Smith, R. Escobedo, M. Anderson,
ples. W are also iesticating learning techniques for “NIRS: Large scale AR-1 neural architectures for engi-

automatic construction of object descriptions, aiming at rlwgggfnlgsggygn retval”, Neural Netwrks, 7, 9, 1994,

precompiling appropriate indexing keys for efficientim- 151 A . cavkell, “The British library's picture research
age retrieval. projects”, Advanced Imaging, Oct. 1993, 38-40.

To conclude, computer vision fefs a number of  [13] N.-S. Chang and K.-S. Fu, “Query-by-pictoriabenple®,

techniques that can bg used in the gimépictorial in- IEEE T-SE, 6, 6, Nov. 1980, 519-523.
. o . [14] R. L. De \4lois, K. K. De \lois, Spatial \sion, Oxford

formation systems. More specificallyueries by means Science Publications, 1990.
of visual &amples need to heidy rely on pattern recog-  [15] A. Del Bimbo, E. \icario, D. Zingoni, “Supporting re-
nition and object matching methods. Future challenges  trieval by contents of digital video sequences through spa-
are in the domain of automated determination ofsnde tio-temporal logic", Proc. 7th Int. Conf. on Image
ing keys from large data sets, and in the development of

Analysis and Processing, S. Impedp Ed., Capitolo,
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new interaction models that irdeate computer vision
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