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Abstract

The use of electromagnetic analogies for perceptual grouping of image primitives is pre-
sented. This approach assumes that grouping is a low-level, data-driven and global process,
with all image tokens interacting in some way.

Two computational models are introduced, which allow determination of proximity and di-
rectionality of image primitives. With the second model, prominent image features are con-
sidered as being electrical charges. According to Poisson’s equation, they generate a scalar
potential and an associated “electrical” vector field. The potential and field, determined by
the combined global influence of all image features, are well defined over the entire image.
The scalar potential can be used for proximity grouping, while the local direction of the field
allows grouping of primitives according to their common directional tendency.

Implementation problems and solutions are presented. Various results are shown and dis-
cussed.

Keywords: low-level vision, perceptual grouping, directionality, proximity, electro-
magnetic model, Poisson, Laplace.
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1.  Introduction

Low-level vision aims at extracting primitives as significant as possible out of an observed
scene, using mostly or only bottom-up mechanisms. Following [Mar82] [Zuc83], “group-
ing” is used as a generic term for a set of processes that construct more abstract entities out
of more primitive ones. Such processes are crucial in analyzing visual inputs; they start at
an early stage and occur recursively at different levels.

Concepts from electromagnetic theory, namely electrical potential and field, allow proxim-
ity and directional grouping respectively. The former type of grouping links tokens that are
close to each other, while the latter links tokens according to a measure of their common
directional tendency.

Section 1 introduces low-level perceptual grouping, proximity and directionality, as well as
discusses the interest of determining directionality. Section 2 first states some basic moti-
vations for the proposed electromagnetic approach. They lead to two simple computational
models; implementation problems and solutions are detailed for one of them. Section 3 pre-
sents and discusses results using abstract images.

1.1.  Low-level perceptual grouping

Even when looking at images composed only of very simple 0D or 1D tokens (dots, seg-
ments), there is clear evidence that the human visual system accomplishes more than simply
contrast detection. Global groupings that are perceived in such circumstances have been ex-
tensively reported. Psychologists from the Gestalt school are famous in this respect [Wer23]
[Pom77]; they theorize on the spontaneous appearance of a “good shape” from seemingly
unconnected tokens. This is often reported as “emergent features effect”, “configural supe-
riority”, or “the whole is more than the sum of its parts” (holism). This emergent percept
hypothetically relies on the well known Gestalt “laws”, such as proximity, continuity, sim-
ilarity, common direction or common fate, closure, etc.

Although the Gestaltists show convincing evidence of the phenomenon, little is said about
its nature. Attempts at modeling the reciprocal influence of patterns by a diffusion process
[Koh20], or brain potentials and DC currents [Koh44] did not go very far. Neurophysiolog-
ical research has made the hypothesis of direct current flows highly unlikely [Bec82], al-
though magnetic fields, oscillatory mechanisms, latencies and phase coherence mecha-
nisms are known to exist in the cortex [Kau84] [Sch90] [Bur91a] [Bur91b]. Nevertheless,
such Gestalt physics and the quest for physical properties yielding order and regularity have
influenced many computer vision researchers.

Grouping is a form of perceptual organization. Studies aiming at explaining perceptual or-
ganization have been conducted from various points of view. The information theoretic ap-
proach [Att54] [Lee71] [Res82] considers good figures as those having a rather regular,
predictable shape, hence minimizing some form of information measure. The transforma-
tional invariance approach [Pal83] defines these good figures as being the most stable, i.e.,
the most invariant to geometrical transformations. Grouping occurs through parallel evalu-
ation of these invariances over many stimuli: grouped primitives are those related by little
or no transformation. Another approach relying on geometric groups properties puts em-
phasis on how local processes in the visual system work cooperatively to produce global
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phenomena of perception [Hof85]; the Lie transformation group is used as a model
[Dod83]. All these approaches offer interesting and relevant notions; not much however is
given in computational terms.

Different researchers have dealt with the extraction of regional or global characteristics out
of images composed of distributed, local tokens; noted examples are detailed in [Gla69]
[Ste78] [Kas85]. Often however these characteristics are global properties, such as orienta-
tion, rather than explicit groupings. There, grouping is not seen as the fundamental problem,
but rather as a consequence, deriving from the results.

Other approaches are more directly related to perceptual grouping. In [Low82], statistical
distributions of features are computed, such as local orientation; non-parametric tests yield
significant image relations. Texture segmentation, where emergent features play an impor-
tant role, has also been related to grouping problems [Jul83] [Bec83]. Grossberg et al (e.g.
[Gro88]) propose an approach based on a cooperative/competitive hierarchy of receptors;
all their models have a strong physiological flavor. Sha’ashua and Ullman [Sha90] use a re-
laxation network to extract global salient features from very noisy figures; their iterative
scheme allocates more resources to structurally salient tokens, finally producing figure-
ground separation.

In [Zuc83], Type I and Type II groupings are defined. In essence, Type I processes are one-
dimensional and have well-defined spatial supports [Zuc85]. Type II groupings operate on
Type II processes, that is dense families of implicit contours. The present approach com-
bines characteristics from both Type I and II groupings. In particular, although the percept
is essentially two-dimensional, grouping is characterized by high positional and orienta-
tional change specificity.

In summary, physiology offers no general explanation to the mechanism of perceptual
grouping. Neither does psychology, where there still are two competing schools, namely
perception (bottom-up) and cognition (top-down). Computationally speaking, there is no
general model available; most of the current approaches are bottom-up and often of a very
ad-hoc nature. The present model, which does not particularily try to model the human vi-
sual system, puts the emphasis on how perceptual grouping can be computationally mod-
eled in a simple, coherent and effective manner.

1.2.  Proximity and directionality

In the process of grouping tokens, spatial proximity plays an important role. The first tokens
to be grouped, with or without directional information, are the closest ones. Amongst the
Gestalt principles [Wer23], proximity is certainly the first to operate. It is obvious in any
grouping, at any level of complexity. It is an underlying paradigm for both cooperative and
competitive mechanisms, since both deal with tokens that are close together.

Directionality refers to the global feeling of an underlying direction that some patterns give
(Fig. 1): circular Moiré patterns [Gla69], hairs [Zuc83], dot patterns, etc. Although fairly
global, the sensation is rather resistant to a reduction of the field of view (Fig. 2). In addi-
tion, it is robust to perturbations.

Patterns such as those shown in Fig.1 somehow give the impression of a “flow” of particles,
linear for Fig.1.a and circular for Fig.1.b. This analogy with a flow is however misleading,
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since in the present case everything is static. The matter of interest here is therefore not the
extraction of the velocity vector associated with each token, but the determination of the un-
derlying direction(s) that emerges upon examination of the image.

Directionality grouping is meant as the process of joining tokens in order to compose
groups that lie along theperceived emergent direction. Thesupports of the local direction
vectors are defined as the line segments linking pairs of grouped tokens. Despite the global-
ity of the overall percept, this grouping process has a well defined local behavior: groups of
tokens presenting small orientational differences with the overall direction are easily per-
ceived.

Proximity as well as directionality can be simply and efficiently computed using the pro-
posed electromagnetic framework: whereas the electrical potential provides means of infer-
ring proximity relationships, the electrical field allows determination of directional infor-
mation.

Fig.1: Dot patterns with strong directionality sensation; a) di-
rection at approximately 45, 60x60 pixels; b) Moire pattern,
64x64 pixels, composed by superimposing 150 randomly dis-
tributed dots and a 4  rotated copy of them.

°

°

Fig.2: Empirical illustration of the resistance to the reduction
of field of view.
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The assumptions underlying the computational model presented here are that:

• grouping is a low-level, data-driven mechanism;

• grouping is a global process, where all image tokens interact in some way; the closer
they are, the more they do so. Globality yields a relative insensitivity to most small
perturbations; this is in accordance with the very qualitative nature of the human vi-
sual system;

• the global measures on which the grouping process is based are well defined locally
over the entire discrete image. Possibility of a local definition is necessary, since cer-
tain minute pattern variations have very significant effects.

1.3.  Why determining directionality?

Directionality provides means of defining afunctional grouping, which links together to-
kens having similar “behavior”; this is reminiscent of the Gestalt “Law of common destiny”
[Wer23]. After linkage, patterns thus constituted can be fed to a higher-level process of a
computer vision system. Furthermore, tokens which show a different behavior are located.
These are of importance in a vision system, for example by offering a means of directing a
focus of attention mechanism [Mil90] [Pun90] [Mil91].

Inferring directional information is useful in itself, since it provides a valuable characteriza-
tion of image properties. In particular, the present approach yields the supports of the local
direction vectors.

The directional grouping approach cannot deal with effects such as similarity, or symmetry.
It seems plausible thathierarchical grouping will have to be used in order to solve these
issues (if it is postulated that they are the result of bottom-up processes). The first two levels
could be based upon proximity and directionality. Similarity, then symmetry, could be com-
puted by more involved grouping stages, on the basis of techniques such as transformational
measures [Pal83] [Ead88] [Yue90].

2.  Electromagnetic models

2.1.  Motivations

The primary motivation for the electromagnetic approach is related with the globality of
perceptual grouping. In order to capture such property, global modeling of interactions be-
tween all elements in a given image region is necessary. This is precisely what is accom-
plished by a potential and its associated vector field: each token is subject to the combined
influence of all others. There is no need to define size or orientation of some operators; the
effect of each element is implicitly taken into account.

Another motivation is that although potential and field have global influences, they are well
defined locally. This allows integration of local, proximity based processes, to coherent glo-
bal operations. As argued in Section 1.2 both of these aspects, global and local, are neces-
sary for directional grouping. They are inherent to the present approach.
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The type of solutions for potential and field that the present model yields (e.g. potential sur-
face and field lines) verify a minimum energy principle. This is in accordance with the soap
bubble paradigm [Att82] [Wit83], which calls for perception of as much regularity as data
allows. Minimum properties are of interest because grouping certainly relies on regularity.

The electromagnetic approach is not a visual process theory, in the sense that there is no
implication that the human visual system follows the same principles (see however [Kau84]
[Sch90] on the role of electromagnetic fields in the cortex). It provides nevertheless a co-
herent and elegant formalism to model how local processes work cooperatively to produce
global phenomena of perception.

Section 2.2 presents two possible electromagnetic analogies for modeling image and to-
kens: the Laplace model and the Poisson model (some basic notions of electromagnetism
are recalled in Appendix).The Poisson model is then used in Section 2.3 for proximity
grouping, and in Section 2.4 for directionality determination and grouping.

2.2.  Two possible models

Each important image feature, called below agenerating feature, generates an electrical
field and consequently a scalar potential. Two electromagnetic analogues for these gener-
ating features can be considered: either electrical conductors at a given potential (Laplace
model, [Pun89]), or space charges (Poisson model, [Pun91]). These two analogies are de-
scribed below, with more emphasis on the second model which is the one used in Sections
2.3 and 2.4

2.2.1.  Laplace model: image features as electrical conductors

This section describes the first analogy, namely the Laplace model. Some key features are
first selected in the original image. In the case of an abstract dots image (Fig. 1), these
“strong tokens” are the dots themselves. More generally, they are image elements at loca-
tions with high gradient (contours). Each of these token has an initial potential value,
function of its luminance :

, or . Eq.1

The image boundary is set at potential . All these initial conditions being established,
it is possible to determine the potential at all points. In electrical terms, the image can be
seen as a plane intersecting electrical conductors being at various potentials; each intersec-
tion is one token (Fig. 3). In this model, no space charge is assumed. The potential
at each point  must satisfy Laplace’s equation:

Eq.2

Laplace’s equation yields the smoothest interpolation surface for a set of initial conditions.
 values are computed using discrete relaxation, which can be seen as propagation of

known image values to an increasingly global neighborhood. A simple implementation of
the relaxation using a top-down, left to right scanning of the image, is given by:

Eq.3

V
I

V I= V I( )log=

V 0=
V

V x y,( )
x y,( )

V∆ 0=

V

Vi 1+ x y,( ) Vi 1+ x 1– y,( ) Vi 1+ x y 1–,( ) Vi x 1+ y,( ) Vi x y 1+,( )+ + +
4

-----------------------------------------------------------------------------------------------------------------------------------------------------=
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with the iterations stopping when  for all . To speed-up relaxation,
values at the unknown points may initially be set to the actual image luminances, rather than
to 0.

Equipotential curves, which are necessarily closed, can then be determined as those curves
that link locations with a given potential .

The potential values at the strong tokens, initially equal to image luminances, arenot mod-
ified by the procedure: they are fixed values (all other values are modified by the relaxa-
tion). This produces a result that is different from a simple low-pass filtering where all val-
ues vary at each step.

It was found that this Laplace model is conceptually not as natural as the Poisson model de-
scribed below, where each token is modeled by an electrical charge. Also, in terms of com-
putation, the electrical charge analogy leads to more straightforward algorithms.

2.2.2.  Poisson model: image features as electrical charges

This section describes the second analogy, namely the Poisson model. The image is denoted
, where  is the luminance at point . A simple situation can be first considered,

where the image is composed only of a series ofN dots at positions , i = 1..N (Fig. 4).
Each dot is modeled by one space charge whose value depends on . For the sake
of simplicity, q is chosen proportional toI (with the normalizing constantk):

Eq.4

Vi 1+ Vi– ε< x y,( ) V

V Veqp=

Fig.3: Image features modeled as electrical conductors. The
scalar potential they produce defines equipotential curves.

electric conductors

x

y
at potentials V(xi,yi)

contour
points

equipotentialsimage plane
border at V = Vb

I x y,( ) I x y,( )
xi yi,( )

q I xi yi,( )

qi f I xi yi,( )[ ] k I xi yi,( ) i = 1..N⋅= =
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Hence, following Eq.18 and Eq.19 (Appendix), Eq.5 and Eq.6 allow direct computation of
the potential  and the electrical field  at each point:

Eq.5

and

Eq.6

where ,  and  respectively correspond to the position of the point where
 and (x,y) are to be determined, the position of charge, and the distance between

the point and the charge , all in a common absolute coordinate system.

It appears from Eq.6 that the electrical field is not defined on a charge. As described below
however (§2.4), it is necessary to be able to define a pseudo-field  at the token locations.
This pseudo-field is determined by adding the contributions of every charge but the one po-
sitioned at the token location:

Eq.7

Using Eq.6 rather than Eq.6 combines both global (sum Σ) and localized ( ) behaviors.
In this way,  is well defined over the entire discrete image (Fig. 5).

V x y,( ) E x y,( )

V r( ) k
I xi yi,( )

r ri–
------------------

i
∑⋅ k

I xi yi,( )

x xi–( )2 y yi–( )2+
----------------------------------------------------

i
∑⋅= =

E r( ) k I xi yi,( )
r ri–

r ri– 3
-----------------

i
∑⋅=

r ri r ri– x y,( )
V x y,( ) E i

i

Fig. 4: Image features modeled as electrical charges. They pro-
duce a scalar potential as well as an electrical vector field in the
image plane.
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∑⋅=
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By generalizing the somehow artificial case of dot patterns, more complex grey-level im-
ages could possibly be treated. The following problem however has to be dealt with: with
the present synthetic images, dots (tokens) are assimilated to charges and generate a Lapla-
cian field; this field is assumed to carry the underlying structural information contained in
the image. The trouble with real images is that there is no guarantee that the grey-levels car-
rying the pictorial information will follow a smoothly varying function, more precisely a
function with zero Laplacian (Laplacian field). How then could the present model be used,
since it makes the assumption that underlying features satisfy Laplace’s equation?

What needs to be done is to assume that Laplace’s equation is locally satisfied, i.e. that the
image is locally smooth. The generating features should then be positioned at locations

Fig. 5: Example of determination of potential and field; a) 4
dots, i.e. 4 charges; b) potential , in grey-levels and in per-
spective; c) field .

V
E

a)

b)

c)



T. Pun Electromagnetic models for perceptual grouping

10

where the image changes from one smooth patch to another; they would therefore corre-
spond to points on object contours. Their associated charge could be the luminance of the
original image, at the contour location. Some experiments along this line have been present-
ed in [Pun89], although making use only of the potential  (proximity grouping).

In summary, generating features such as points or contours are represented by dots. Each
such dot generates a field; the global solution is obtained by superimposition of all individ-
ual effects.

2.3.  Poisson model: proximity grouping

Proximity grouping is the process which links tokens which are close together. The simplest
way of achieving this is by using as a grouping criterion the Euclidean distance separating
the tokens. An alternate approach, presented in this section, is to make use of the electrical
potential determined using either the Laplace model or the Poisson model. General princi-
ples are recalled here; more details can be found in [Pun89].

The potential needs first to be determined over the entire image (Eq.5). Then, for
each constant potential value  in the dynamic range , there exists
at least one equipotential curve defined by:

Eq.8

The equipotentials are closed; depending on , they surround more or less image ele-
ments. These surrounded image tokens are those that are grouped together.

In addition, links between the grouped regions could be defined using field lines. Field lines
are curves that are in each point tangent to: they are therefore orthogonal to equipoten-
tials. In the cartesian referential , each element  of a field line verifies:

Eq.9

Since field lines are normal to equipotentials, they can be seen as links between the tokens
(generating features), as well as between the equipotentials. They could therefore be used
to indicate which group of primitives is to be related to which other.

2.4.  Poisson model: directional grouping

2.4.1.  Supports of the direction vectors and directionality grouping

Directionality grouping is the process of joining tokens in order to compose groups lying
along the emergent direction. The line segments linking pairs of grouped tokens will define
the supports of the local direction vectors.

In computational terms, directional grouping links together those segments having themost
similar electrical fields  in direction and orientation. As an example, Fig.6 shows 4 charg-
es with  computed using Eq.6. Such 4-point patterns appear at various locations in the test
images and are representative of a frequently occurring situation. and  are the most
similar, therefore tokens  and , rather than  and  (nearest neighbors) will be

V

V x y,( )
Veqp Vmin Veqp Vmax≤ ≤

V x y,( ) Veqp=

Veqp

E
x y,( ) dx dy,( )

dx
Ex
------

dy
Ey
------=

E
E

E1 E2
q1 q2 q1 q3
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grouped. In the same manner,  and  are similar;  and  are therefore grouped. Fi-
nally, the supports of the local direction vectors are the lines  and .

Fig.6 illustrates two important points:

• directionality grouping is different from proximity grouping: the latter would join
with ,  with ;

• the supports of the local direction vectors are not colinear with the direction of the lo-
cal field . The  field direction corresponds to the gradient of the local potential
function; this is not the case with these local direction vectors.

2.4.2.  Scale and similarity

Pairs of tokens that will be grouped are those for which the field directions are the most
similar. The measure of similarity between two charges is defined as the normalized sca-
lar product of the field directions:

Eq.10

The similarity varies between -1 and +1. A perfect match is indicated by +1; opposite and
orthogonal directions are respectively -1 and 0.

Thescale of observation also needs to be selected; this is actually the only parameter that
is required. Tokens  and  are grouped only if they are closer than a given distance:

Eq.11

E3 E4 q3 q4
q1q2 q3q4

Fig.6: 4 image tokens ; electrical fields
 (Eq.6). The dotted lines are the supports of the

local direction vectors.

q1 q2 q3 q4, , ,
E1 E2 E3 E4, , ,
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q2q1

q3
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E2

E4
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q3 q2 q4

E E

E
s

s qi qj,( )
Ei Ej⋅

Ei Ej⋅
------------------- Ei Ej,( )cos= =

qi qj dmax
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3.  Implementation, results and discussion

Dot patterns have been chosen as test images in order to circumvent other issues, such as
contours finding. The methodological choice of using abstract images has already been ex-
tensively addressed (e.g. [Zuc83] [Ull84]). Section 3.1 below presents implementation and
details results. Section 3.2 discusses important features of the approach.

3.1.  Implementation and results

Two of the images used for the experiments are shown in Fig.1. In Fig.1.a, which is similar
to Fig.8 in [Zuc83], there is an overall direction at approximately 45 degrees. Fig.1.b, in-
spired by [Gla69] or Fig.3 in [Zuc83], consists of the superimposition of a random field
comprising approximately 150 dots with a rotated version of itself (angle 4 degrees). The
Moiré figure thus constituted gives a strong circular feeling, that is to say that the local di-
rection vectors lie along the tangents to the circles.

Values of tokens are arbitrarily set at 255, the background being 0. at each location is
computed from Eq.6. Tokens groups, that define the supports of the direction vectors as
well, are built by pairing dots that have the most similar directions (Eq.10) and are closer
than a fixed  (Eq.11).

Fig.7 presents the result of directional grouping on Fig.1 patterns. Situations similar to the
one schematically depicted in Fig.6 appear at various places: dots that are linked together
are not necessarily the closest ones. For the sake of comparison, Fig.8 shows the result of
grouping dots on the basis of proximity, i.e. by linking nearest neighbors as long as their
distance does not exceed a limit . Results are clearly different. In Fig.8, as opposed to
Fig.7, the line segments do not match with the perceived directional sensation.

E

E
dmax

dmax

Fig.7: Directional grouping: a) on Fig.1.a (  = 3): average
and mode of the distribution are 45  (84% have an orientation
of 45 +/-18 ); b) on Fig.1.b (  = 4). Line segments indi-
cate token pairs as well as supports of local direction vectors.
These vectors correspond well with the underlying global di-
rection.

dmax°
° ° dmax
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Fig.7.a and Fig.8.a have been quantitatively compared by analyzing the distribution of line
segments orientations (Fig.9). For Fig.7.a, the average and mode of this distribution are at
45 degrees; 73% of the segments have the “correct” 45 angle, 84% have an orientation of
45 +/-18 . This corresponds very well with the overall direction sensation. By contrast, for
Fig.8.a, there are 3 almost equal modes at 0, 45  and 90 ; only 30% of the angles are 45.
The latter result is much less in accordance with the overall direction.

The difference between Fig.7.b and Fig.8.b is more difficult to quantify. Qualitative differ-
ences are however easily perceived, as in the lower-left part of the image, or more generally
on the outside of the circular Moiré. Directional grouping yields segments consistently tan-
gential to the “circles”, therefore well in accordance with the perceived circular pattern.

Fig.8: Proximity grouping: a) on Fig.1.a (  = 3): 30% of
the segments have the 45  angle; b) on Fig.1.b (  = 4).
Values of  are the same as those used in Fig.7. Here, the
local direction vectors do not correspond with the underlying
global direction.

dmax° dmax
dmax

°
° °

° ° ° °

45o 90o 180o

a)

45o 90o 180o

b)

Fig.9: Distributions of the line segment orientations; a) for Fig.7a; b) for Fig. 8a.
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Fig.10 is a drawing of the normalized vectors at each dot location. This figure clearly il-
lustrates the fact that the electrical field vectors are not parallel to the local direction vectors.
They are not orthogonal either: there is no obvious systematic relationship between them.
What is achieved is functional grouping, that is pairing tokens that share similar “behav-
iors”.

3.2.  Discussion

Results obtained with directionality grouping (Fig.7) markedly differ from those obtained
with proximity grouping (Fig.8). Directional grouping provides results qualitatively similar
to the global perception; this is not the case with proximity grouping. The schematic four
tokens pattern of Fig.6 exemplifies the basic reason for the difference; such patterns can be
found at various locations in Fig.7 and Fig.8. This difference between proximity and direc-
tionality grouping makes them complementary and calls for a two-stage grouping model
where advantages of each mechanism could be jointly used. This aspect is currently being
investigated.

The approach needs no tuning or parametrization, apart from the choice of. Various
means for automatically determining an appropriate value are being experimented.
One possibility is to select the first possible grouping, as being the one which groups more
thanx% of all tokens. From a more general perspective though, the problem of selecting

 is reminiscent of the pervasive scale determination problem. This question arises at
every level in a vision system, iconic as well as symbolic. It is therefore possible that an
appropriate observation scale could be determined by an entirely different approach, for ex-
ample based on measures in scale space [Koe84] [Bru90].

Grouping is here limited to linking tokens by pairs, although the similarity measure (Eq.10)
could be used as well to group n-tuples of dots. Groups of dots would however not
allow definition of the local direction vectors, whose supports are pairs of tokens. Grouping
such pairs into more complex patterns is certainly of interest, but it seems more appropriate
to do this by hierarchically linking pairs two by two rather than by joining them all at once.

E

Fig.10: Local directions for Fig.7.a and Fig.7.b (normalized
vectors).

E

dmax
dmax

dmax

n 2>
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The line segments obtained by pairing tokens do not define direction vectors in the strict
sense, but rather the supports of these vectors: there is a 180 degrees ambiguity in their ori-
entation. This ambiguity simply reflects the ambiguity of the pattern. When looking at
Fig.1.a, the overall direction can equally well be perceived as going towards the upper-right
corner than towards the lower-left one. The Moiré of Fig.1.b can be perceived clockwise as
well as counter-clockwise. Such type of ambiguity is inherent to images that are static. Pat-
terns varying with time would be needed to raise it; they would unequivocally define an ori-
entation, such as towards the upper-left with a 45 angle. The time varying Maxwell’s
equations could possibly be used to help determine the optical flow vectors.

It can be noticed that Poisson’s equation is a particular case of the heat equation [Koe84].
There is however an important difference. In the present electromagnetic model, initial con-
ditions remain constant: they are fixed (given) space charges. In terms of heat transfer, the
present approach corresponds to a situation with permanent, constant heat sources in the
medium [Léo85].

Finally, another characteristic of the present approach that deserves notice is that it is inva-
riant under monotonous transformations of interpoint distances. If images are scaled by a
factor , and  also is scaled to , results will be the same.

4.  Conclusion

A robust, deterministic computational model for directional grouping has been presented.
This model integrates local processes into coherent, global operations. Although extremely
simple in concept as well as in implementation, it appears as an elegant and powerful means
for:

• determining the supports of the local direction vectors;

• hierarchically linking tokens that lie along the perceived global direction.

This functional grouping relies on directionality of patterns, and is markedly different from
what a nearest-neighbor based grouping would provide. The differing characteristics of
proximity and directionality grouping therefore pave the way towards a two-stage model
combining their respective properties.
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Appendix: Fundamentals of Maxwell’s Equations

A1.  Electrostatic and magnetostatic case

The present electromagnetic model assumes no temporal variation: images are static, stim-
uli are constant with respect to time. Hence the electrostatic differential Maxwell’s equa-
tions [Ram84]:

Eq.12

where  is the electrical field,  the electrical displacement andρ the volumetric charge
density. In a linear medium,  and  are linearly related by the medium permittivityε:

Eq.13

Since the curl of a gradient is identically zero, Eq.12.a implies that is the gradient of some
scalar field. This defines the electrical potential V:

Eq.14

A2.  Electrostatic with charges: Poisson’s equation

In the presence of space charges, Eq.12.b, Eq.13 and Eq.14 yield Poisson’s equation:

Eq.15

In the case of one point charge (Fig.A1),  has only a radial component, where  is
the distance to the charge:

Eq.16

E∇× 0=

∇ D⋅ ρ=

E D
E D

D εE=

E

E ∇V–=

∇2V V∆ ρ ε⁄–= =

q E Er r

Er q 4πεr2( )⁄=

Fig.A1:   One electrical charge, with the 3D coordinate system
centered on this charge.
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The potential  is obtained by integration:

Eq.17

This result can be extended to a set of  point charges, i = 1..N:

Eq.18

where ,  and  respectively denote observer’s position, chargei’s position and the
distance between observer and charge i, all in a common absolute coordinate system. is
obtained by expressing Eq.14 in cylindrical coordinates:

Eq.19

V and  have singularities on the charges; this corresponds to the fact that arrives radially
on each on them.  and are directly computed by adding individual contri-
butions (Eq.18, Eq.19). This approach is simpler than the one presented in [Pun89], where
a relaxation mechanism is used to solve Laplace’s equation  in order to obtain po-
tential and field.
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