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ABSTRACT

In this paper we analyze performance limits of multimodal biometric identification systems. We consider impact
of the inter-modal dependencies on the attainable probabilities of error and demonstrate that an expected
performance gain from fusion of dependent modalities is significantly higher than in the case when one fuses
independent signals. Finally, in order to demonstrate the efficiency of dependent modality fusion, we perform the
problem analysis in the Gaussian formulation and show the performance enhancement versus the independent
case.

1. INTRODUCTION

Establishing of the person identity has become a crucial requirement of our modern society. Access to vari-
ous services, facilities and infrastructers is granted based on the answers to the following questions: “Is the
person really who he/she claims to be?,” “Is this person authorized to use this facility?,” or “Is he/she in the
watchlist posted by the government?” that are habitually posed in multiple everyday scenarios. Evidently, in
order to ensure that an impostor or illegal user will be able to fool the control procedure, person identification
systems should be introduced that satisfies challenging simultaneous requirements to the verification security
and reliability in constantly developing and improving modern communications infrastructure including mobile
communication networks.1

Definitely, classical person identification techniques that are based on what the person knows (password/pin/
key) or on what the person possesses (passport/ID card) cannot in a complete scale satisfy the mentioned
requirements especially with respect to security. The posibility that the possessed person identification documents
can be stolen or lost and the secure access data can be forgotten, guessed or maliciously intercepted open a wide
secure hole for their illegal misuse.2, 3

That is why modern person identification is performed based on biometrics, which refer to unique physiological
or behavioral characteristics, i.e., to “something what you are or you do”.4 The kinds of biometric data that
is used for person identification include face, fingerprint, iris, DNA, voice sample, signature, hand geometry,
keystroke, etc. Since every individual has a unique set of biometric features, they cannot be stolen or forgotten,
they are very hard to distribute, copy and share, the security concern of identification systems exploiting these
data is significantly relaxed versus traditional identification systems.

Depending on a particular identification protocol requirements, various instances of biometric traits can be
used.4 A decision about the use of a particular underlying biometric feature is usually made based on the level
of its “universality (do all people have it?), distinctiveness (can people be distinguished based on an identifier?),
permanence (how permanent are the identifiers?), and collectable (how well can the identifiers be captured and
quantified?), performance (matching speed and accuracy), acceptability (willingness of people to accept), and
circumvention (foolproof)”.5 Unfortunately, there is no biometric feature that meets all requirements. Every
biometric has strong and weak points with respect to the presented factors. Identification performance that can
be attained based on a particular biometric features is one of the most important among them. It was shown that
every biometric has a theoretical upper bound in terms of its ability to distinguish individuals. For instance,
hand geometry and face biometrics can be used to reliably distinguish 105 and 103 instances, respectively.6

Fingerprints are justified to have a very high matching accuracy,7 however their permanence for people who are
doing some manual job is questionable as well as collectability, since a high quality fingerprint can be obtained
not for everyone.8
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As a natural solution to overcome shortcomings of particular biometrics non-optimality, multibiometric sys-
tems were proposed9–11 that are attempting to benefit in terms of achieved performance from the presence of
several biometric modalities or multibiometrics. Fusion of multibiometrics can be performed on various struc-
tural levels of an identification system5: sensor level, feature level, match score level, rank level and decision
level. Due to the data processing inequality,12 expected performance improvement will be the highest if fusion is
performed on the sensor level and will not be necessarily monotonically decreasing to the decision level. Usually
it is very difficult to apply on practice due to various technological aspects. That is why very few results are
known today demonstrating the efficiency of such systems.13 Mostly, the fusion in practical multibiometric
person identification systems is accomplished on match score or decision levels.14, 15 The analysis is usually per-
formed in within the Bayessian statistical framework.16, 17 Thus, the problem of theoretical performance limit
analysis of identification systems based on fusion of multimodal biometrics open. Secondly, the influence of the
dependence/independence of the fused multimodal signals on the attained system theoretical performance was
not addressed yet to our best knowledge. The existing results in this direction concern the correlation structure
of these data. Surprisingly, but there does not exist a unique point of view on this problem. For instance, it is
reported in18 that fusion of correlated biometrics does not always lead to the fusion performance improvement
versus combining independent signals. Contrarily, it is demonstrated in 17 that taking into account correlation
between the biometric modalities one can obtain an improvement. Additionally, no impact of the modality vector
length on the identification performance was reported.

Motivated by the existing gap in the theoretical performance analysis of a binary multimodal biometric person
identification systems, we formulate the goal of this paper as follows in the justification of their performance in
terms of error exponents for both cases of dependent and independent multimodal fusion setup cases.

The remaining part of the paper is organized as follows. We formulate the problem of the theoretical analysis
of binary multimodal biometric person identification in Section 2. Performance analysis of multimodal biometric
fusion is performed in Section 3. Finally, conclusion and future research perspectives are formulated in Section
4.

Notations We use capital letters to denote scalar random variables X and corresponding small letters x to
denote their realizations. The superscript N is used to designate length-N vectors xN = [x[1], x[2], ..., x[N ]] with
kth element x[k]. We use X ∼ pX(x) or simply X ∼ p(x) to indicate that a random variable X is distributed
according to pX(x). The mathematical expectation of a random variable X ∼ pX(x) is denoted by µX and σ2

X

denotes the variance of X. We use Σ to denote a covariance matrix. Correlation coefficient between two random
variables is designated by ρ. Calligraphic fonts X denote sets X ∈ X and |X | denotes the cardinality of set X .
Superscript T stays for matrix transposition.

2. PROBLEM FORMULATION

We model a problem of binary multimodal biometric person identification as a binary hypothesis testing problem
(Fig. 1). According to this set-up, the source of biometric multimodal signals governed by a joint probability
distribution p(xN , yN ) produces a pair of length N vectors XN ∈ XN and Y N ∈ YN such that (XN , Y N ) ∼
q(xN , yN ). In general, the length of the observed data vectors is not necessary equal (Fig. 2). This particular
choice was made for the sake of analysis simplicity. The hypothesis testing block observing this pair of vectors
performs a test η in order to decide if the set of multimodal signals belongs to a legal user or to an impostor.
Thus, a binary multimodal biometric person identification system consists of the set

{

XN , Y N
}

and a hypothesis
test:

η : XN × YN → {0, 1} , (1)

where 0,1 stay to indicate the case of assigning the user to a class of legals or impostors, respectively. We will
refer to the hypothesis that correspond to the latter case as H0 and to the former case as H1. Therefore, the
task of multimodal biometrics binary person identification as a hypothesis testing is to decide which of the two
hypotheses is true given (XN , Y N ). It is assumed that the test is performed as:
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Figure 1. Multimodal biometric person identification: binary hypothesis testing formulation.

{

H0, (X
N , Y N ) ∼ p0(xN , yN ),

H1, (X
N , Y N ) ∼ p1(xN , yN ),

(2)

where a priori statistical models on alternative hypotheses are denoted by H0 ∼ p0(xN , yN ) =
∏N

i=1 p0(xi, yi),H1 ∼
p1(xN , yN ) =

∏

i=1 p1(xi, yi).
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2NY
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Figure 2. Multimodal observations: the vectors of different lengths might be observed.

Various tests can be performed to solve the above identification problem, i.e., Bayessian, minimax or Neyman-
Pearson, however we will use the optimal Neyman-Pearson test in our formulation in order to attain the lowest
probabilities of misclassification. These errors are of two kinds, type I error or a false alarm, denoted as Pf ,
occurs if a legal user is approved to be an impostor, and type II error or a miss, denoted as Pm, occurs in the
opposite case defined as:

Pm = Pr[η ≤ T |H1], (3)

Pf = Pr[η ≥ T |H0]. (4)

It is stated by the Neyman-Pearson lemma that for a given maximal tolerable probability Pf , Pm can be
minimized by stating hypothesis H0 in the case the log-likelihood ratio defined as:

η = N
{

D(q(x, y) || p1(x, y)) − D(q(x, y) || p0(x, y))
}

≥ log2 T, (5)

where it is supposed that the source p(xN , yN ) is memoryless, i.e., p(xN , yN ) =
∏N

i=1 p(xi, yi), and thus the

empirical distribution is defined as q(xN , yN ) =
∏N

i=1 q(xi, yi), p0(xN , yn) =
∏N

i=1 p0(xi, yi), p1(xN , yn) =



∏N

i=1 p1(xi, yi); D(. || .) stays for a relative entropy between two distributions12 and T designates a preifined
threshold.

In case error probabilities of false alarm and miss are defined according to (3) and (4), the following inequality
is valid19:

Pm log
Pm

1 − Pf

+ (1 − Pm) log
1 − Pm

Pf

≤ D(p1(xN , yN ) || p0(xN , yN )) (6)

Fixing in (6) probability Pm = 0, one obtains a lower bound on Pf that increases with decrease of relative
entropy D(p1(xN , yN ) || p0(xN , yN )):

Pm ≤ 2−D(p1(xN ,yN )||p0(xN ,yN ))). (7)

Thus, in order to maximize the performance of a multimodal person identification, one should try to maximize
D(p1(xN , yN ) || p0(xN , yN ). In order to achieve optimal performance in terms of the Bayessian probability of
error, Pe = πIPf + πIIPm, where πI , πII stay for costs of making the error of type I and II, respectively, the
so-called J-divergence, J = D(p1(xN , yN ) || p0(xN , yN )) + D(p0(xN , yN ) || p1(xN , yN )) should be maximized.20

Finally, the complete system performance analysis can be performed based on Stein lemma.12 According to
this lemma the performance of the Neyman-Pearson classifier is defined as:

Pf ∼ 2−N[D(p1(x,y))||D(p0(x,y))], for a fixed Pm, (8)

Pm ∼ 2−N[D(p0(x,y))||D(p1(x,y))], for a fixed Pf . (9)

Thus, the overall system performance is determined by the corresponding relative entropies defined with respect
to the prior distributions on alternative hypotheses.

In the following sections we will consider the impact of modality dependence on the corresponding probabilities
of error.

3. PERFORMANCE ANALYSIS

3.1. Independent modalities

In this case a priori models for alternative hypotheses can be written as p1(x, y) = p1(x)p1(y); p0(x, y) =
p0(x)p0(y). Thus, applying a chain rule for relative entropies, one has:

D(p1(x, y)) ||D(p0(x, y)) = D(p1(y) || p0(y)) + D(p1(x) || p0(x)), (10)

D(p0(x, y)) ||D(p1(x, y)) = D(p0(y) || p1(y)) + D(p0(x) || p1(y)). (11)

The corresponding bounds on the probabilities of error are:

Pf ∼ 2−N[D(p1(y)||p0(y))+D(p1(x)||p0(x))], for a fixed and arbitrary small Pm, (12)

Pm ∼ 2−N[D(p0(y)||p1(y))+D(p0(x)||p1(y))], for a fixed and arbitrary small Pf . (13)

Therefore, performance of the multibiometric person identification system measured in terms of error expo-
nents enhnances with a number of fused signals.



3.2. Dependent modalities

In this case p(x, y) 6= p(x)p(y). Thus, the bounds on the probabilities of error are determined by (8) and (9).

According to the chain rule for the relative entropy one has:

D(p1(x, y) || p0(x, y)) = D(p1(y) || p0(y)) + D(p1(x |y ) || p0(y |x )), (14)

D(p0(x, y) || p1(x, y)) = D(p0(y) || p1(y)) + D(p0(x |y ) || p1(x |y )). (15)

Thus, in order to compare the bounds for dependent (8) and (9) and independent (14) and (15) cases one should
compare two quantities:

D(p0(x) || p1(x)) vs. D(p0(x |y ) || p1(x |y )), (16)

D(p1(x) || p0(x)) vs. D(p1(x |y ) || p0(x |y )). (17)

In the case,

D(p0(x) || p1(x)) ≤ D(p0(y |x ) || p1(x |y )), (18)

D(p1(x) || p0(x)) ≤ D(p1(x |y ) || p0(x |y )). (19)

one can conclude that fusion of dependent modalities has a better performance than one can obtain by fusing
independent signals.

Lemma: Conditioning does not reduce relative entropy.

Proof.
D(p0(y |x ) || p1(y |x )) − D(p0(x) || p1(x))

=
∑

x

∑

y p1(x, y) log p1(x|y )
p0(x|y ) −

∑

x p1(x) log p1(x)
p0

X
(x)

=
∑

x

∑

y p1(x, y) log p1(x|y )
p0(x|y ) −

∑

x

∑

y p1(x, y) log p1(x)
p0(x)

=
∑

x

∑

y p1(x, y) log p1(x|y )p0(x)
p0(x|y )p1(x)

≥ 1 −
∑

x
p1(x)
p0(x)

∑

y p1(y)p0(x |y )

= 1 −
∑

x
p1(x)
p0(x)p

0(x)

= 0,

(20)

where the only inequality in (7) is due to log(x) ≥ 1 − 1
x
.

Thus, based on (6) one can conclude that fusion of independent modalities gives the lower limit of performance
enhancement in multimodal fusion classification problem. When modalities are dependent, the gain due to the
fusion is higher in terms of reduction of error probabilities.



3.3. Bivariate Gaussian case.

In order to evaluate quantitatively the performance gain one can expect from fusion of dependent modalities in
binary multimodal biometric identification systems, it was assumed that the priors on alternative hypotheses
follow bivariate Gaussian distributions:

p1(x, y) =
1

2π
√

det(Σ1)
exp

{

−
1

2
[x − µX1

, y − µY1
]
T

Σ−1
1 [x − µX1

, y − µY1
]
}

; (21)

p0(x, y) =
1

2π
√

det(Σ0)
exp

{

−
1

2
[x − µX0

, y − µY0
]
T

Σ−1
0 [x − µX0

, y − µY0
]
}

, (22)

with mean vectors [µX1
, µY1

], [µX0
, µY0

] and covariance matrices

Σ1 =

(

σ2
X1

ρσX1
σY1

ρσX1
σY1

σ2
Y1

)

;

Σ0 =

(

σ2
X0

ρσX0
σY0

ρσX0
σY0

σ2
Y0

)

,

where ρ is a correlation coefficient.

Therefore, the joint relative entropies that define corresponding probabilities of error are given by:

Pf : D(p1(x, y) || p0(x, y)) =

1

2

{

log2

det(Σ1)

det(Σ0)
+ tr

[

Σ−1
1 Σ0

]

+ [µX0
− µX1

, µY0
− µY1

] Σ−1
0 [µX0

− µX1
, µY0

− µY1
]
T

}

; (23)

Pm : D(p0(x, y) || p1(x, y)) =

1

2

{

log2

det(Σ0)

det(Σ1)
+ tr

[

Σ−1
0 Σ1

]

+ [µX1
− µX0

, µY1
− µY0

] Σ−1
1 [µX1

− µX0
, µY1

− µY0
]
T

}

, (24)

where inverse covariance matrices Σ−1
1 and Σ−1

0 defined in the following way:

Σ−1
1 =

1

σ2
X1

σ2
Y1

(1 − ρ2)

(

σ2
Y1

−ρσX1
σY1

−ρσX1
σY1

σ2
X1

)

,

Σ−1
0 =

1

σ2
X0

σ2
Y0

(1 − ρ2)

(

σ2
Y0

−ρσX0
σY0

−ρσX0
σY0

σ2
X0

)

.

To exemplify a possible gain, the parameters of a priory distributions p1(x, y) and p0(x, y) where fixed to
µX0

= 10, µX1
= 20, σ2

X0
= 36, σ2

X1
= 16, µY0

= 4, µY1
= 8, σ2

Y0
= 4, σ2

Y1
= 6. The behavior of D(p1(x, y) || p0(x, y))

and D(p0(x, y) || p1(x, y)) as functions of the correlation coefficient ρ was analyzed. The obtained results are
shown in Figure 3. They completely confirm our theoretical findings.
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Figure 3. D(p1(x, y) || p0(x, y)) and D(p0(x, y) || p1(x, y)) as functions of ρ.

4. CONCLUSIONS AND FUTURE RESEARCH PERSPECTIVES

In this paper we considered the problem of performance analysis of binary multimodal biometric person iden-
tification. In particular, we considered two setups where fusion of independent and dependent modalities is
performed. We developed a bound on the probabilities of miss and false alarm in terms of error exponents
for both setups and theoretically proved that dependence between multimodal signals leads to the enhanced
biometric fusion performance versus the setup with independent modalities. For demonstration purpose, we an-
alyzed the bivariate Gaussian formulation of the problem and quantified the expected performance improvement.
Since in the case of Gaussian data independence is equivalent to the uncorrelation, one can conclude that fusion
of correlated modalities leads to a higher accuracy in classification problem. In particular, relative entropies
that define the corresponding probability of errors, i.e., probability of false alarm and probability of miss, are
non-decreasing monotonic functions of the correlation coefficient ρ on the interval [0,1].

As a natural extension of the obtained result we see its application to the domain of secure documents where
we would like to develop a general system architecture and analyze multiple hypothesis formulation (Fig. 4).
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Figure 4. Multimodal biometric person identification: multiple hypothesis testing formulation.

Another potential future research line consists in the extension of the developed framework to the multimodal
person identification using ID cards that contain embedded biometric data and personal data. Our goal is to
develop a general system structure and to evaluate its performance.
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