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Abstract

We present an approach to learn user seman-
tic queries from dissimilarity representations
of video audio-visual content. When dealing
with large corpora of videos documents, using
a feature-based representation calls for the
online computation of distances between all
documents and the query. Hence, a dissim-
ilarity representation may be preferred be-
cause its offline computation speeds up the
retrieval process. We show how distances re-
lated to visual and audio video features can
directly be used to learn complex concepts
from a set of positive and negative exam-
ples provided by the user. Based on the
idea of dissimilarity spaces, we derive a low-
dimensional multimodal representation space
where an on-line and real-time classification
is performed to learn user queries. The clas-
sification consists in maximizing a non-linear
Fisher criterion to separate positive from neg-
ative examples. The evaluation, performed
on the complete annotated TRECVid corpus,
shows that our technique enables us to im-
prove the precision of retrieval results.

1. Introduction

Determining semantic concepts by allowing users to
iteratively refine their queries is a key issue in multi-
media content-based retrieval. The relevance feedback
loop allows to construct complex queries made out of
positive and negative documents as examples. From
this training set, a learning process should then extract
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relevant documents from feature spaces. Many rele-
vance feedback techniques have been developed that
operate directly in the feature space (Chang et al.,
2003; Smith et al., 2003; Yan et al., 2003; Zhou &
Huang, 2004).

Describing content of videos requires to deal in paral-
lel with many high-dimensional feature spaces express-
ing the multimodal characteristics of the audiovisual
stream. This mass of data makes retrieval operations
computationally expensive when dealing directly with
features. The simplest task of computing the distance
between a query and all other elements becomes in-
feasible when involving tens of thousand of documents
and thousand of feature space components. This prob-
lem is even more sensible when the similarity measures
are complex functions or procedures, such as predic-
tion functions for temporal distances (Bruno et al.,
2005) or graph exploration for semantic similarities
(Resnik, 1995).

A solution to allow on-line interaction would be to
compute off-line monomodal dissimilarity relation-
ships between elements and to use the dissimilar-
ity matrices or distance-based indexing structures
(Chávez et al., 2001) as an index for retrieval oper-
ations. The problem is then to find distance-based so-
lutions that go beyond the classical k -NN approaches
(Boldareva & Hiemstra, 2004) in order to perform ef-
fective classification and retrieval of semantic concepts.
Pekalska et al (Pekalska et al., 2001) have proposed
dissimilarity spaces where objects are represented not
by their features but by their relative dissimilarities to
a set of selected objects. These representations seem
to form a convenient approach to tackle the similarity-
based indexing and retrieval problem.

In this paper, we investigate the idea of dissimilarity
spaces for the specific problem of multimedia docu-
ment retrieval, and show how dissimilarities can be
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used to build a low-dimensional multimodal represen-
tation space where learning machines based on eg non-
linear discriminant analysis could operate. Our thor-
ough evaluation on the complete TRECVid corpus
shows that this multimodal dissimilarity space allows
to perform effective retrieval of video documents in
real time, as defined in (Nielsen, 1993).

2. Classification in dissimilarity space

In the proposed retrieval system, video segments are
represented by their dissimilarity relationships com-
puted offline over several audiovisual features. The
user can formulate complex queries by iteratively pro-
viding positive and negatives examples in an online
relevance feedback loop. From this training data, the
aim is to perform a real-time dissimilarity-based clas-
sification that will return relevant documents to user.

2.1. Dissimilarity space

Let d(xi,xj) be the distance between elements i and j
according to their descriptors x ∈ F . F expresses the
(unavailable) original feature space. The dissimilarity
space is defined as the mapping d(z, Ω) : F → RN

given by (see (Pekalska et al., 2001) for details):

d(z, Ω) = [d(z,x1), d(z,x2), . . . d(z,xN )]. (1)

The representation set Ω = {x1, . . . ,xN} is a subset
of N objects defining the new space. The new “fea-
tures” of an input element are now the dissimilarities
between itself and the representation objects. As a
consequence, learning or classification tools for feature
representations are also directly available to deal with
the dissimilarities.

The dimensionality of the dissimilarity space is directly
linked to the size of Ω, which controls the approxi-
mation made on the original feature space (such an
approximation could be computed using projection al-
gorithms like classical scaling (Cox & Cox, 1995)). In-
creasing the number of elements in Ω increases the
representation accuracy. On the other hand, we are
interested in minimizing the space dimensionality so
as to limit computation and to speed up the response
time of the system. The selection of Ω will however be
driven by considerations on the classification problem
as explained now.

2.2. Non-linear discriminant analysis

Let us define the set T as the query formed out
of positive and negative training examples (respec-
tively denoted P and N with T = P ∪ N ), their
coordinates in the dissimilarity space are respectively

d+
i = d(zi∈P ,Ω) and d−i = d(zi∈N , Ω).

Given a query T , the aim is therefore to find a rele-
vance measure D(di) : RN → R that maximizes the
following Fisher criterion

max
D

∑
i D2(d−i )∑
i D2(d+

i )
. (2)

The measure D(d) gives us a new ranking function
where positive elements tend to be placed at the top
of the list while negatives one are pushed to the end.

Depending on the separability of the data according to
a query T , the ranking function D(d) may be chosen
as a linear or non-linear function of the dissimilari-
ties. Following the kernel machine formulation, D(d)
is written in both cases (linear or not) as an expansion
of kernels centered on training patterns (Schölkopf &
Smola, 2002):

D(d) =
∑

i∈T

αik(d,d±i ) + b. (3)

Using such non-linear model in criterion (2) leads
to the formulation of the Kernel Fisher Discriminant
(KFD) (Mika et al., 1999). It has been shown that
this problem can be solved by using mathematical pro-
grams (quadratic or linear). The proofs and the im-
plementation of the algorithm we use to optimize (2)
can be found in (Mika et al., 2000).

In general, we are dealing with a 1 + x class setup
with 1 class associated to positives and x to negatives
(Zhou & Huang, 2004). It is then needed to estimate
complex decision functions to learn the semantic con-
cepts, increasing the risk to encounter difficulties for
choosing and tuning well-adapted kernels. However,
selecting the representation set as the set of positive
examples P turns the problem into a binary classifica-
tion. Assuming that the positive examples are close to
each other while all being far from negatives, the vec-
tors d(zi∈P ,P) (within scatter) have norms lower than
vectors d(zi∈N ,P) (between scatter), leading to a bi-
narization of the classification, as illustrated in figure
1. In addition, this choice readily induces to work in a
low dimensional space of p = |P| components, where
online learning processes are dramatically speeded-up.

Kernel selection and setting is a critical issue to suc-
cessfully learn queries. It actually decides upon the
classical trade-off between over-fitting and generaliza-
tion properties of the classifier and hence is very de-
pendent of the considered dissimilarity space. This
problem is discussed in the next section.
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Figure 1. The 1 + x class problem in feature space (left) and dissimilarity space (right) where the representation objects
are two points from the central class (cross)

3. Multimodal space

The video content is characterized by features cor-
responding to multiple modalities (eg, visual, audio,
speech). Each of them leads to a dissimilarity matrix
containing pairwise distances between all documents.
Let us note dfi the distance measure applied on the
feature space Fi and assume that dissimilarity matri-
ces are known for M feature spaces. We define the
multimodal dissimilarity space d as the concatenation
of all monomodal spaces dfi

d = [df1 ,df2 , . . . ,dfM ]. (4)

The kernel function used in equation (3) now oper-
ates in a multimodal space. Its choice is then a criti-
cal issue to ensure the success of the modalities fusion
coming from the resolution of equation (2). The RBF
kernel k(x,y) = e−(x−y)T A(x−y) presents a convenient
solution for our problem: it is indeed able to learn
semantic concepts that are locally distributed within
the representation space, and the scaling symmetric
positive definite matrix A permits to tune the trade-
off between over-fitting and generalization. As the in-
put space is multimodal, the scaling matrix is con-
structed so as to allow independent scaling for each
feature space, so that A = diag[σf1 , · · · ,σfM

]. The
vector σfi ∈ Rp is constant with all values equal to
the scale parameter σfi estimated for the dissimilar-
ity space dfi . Various approaches to automatically
tune the scale parameters (Cristianini et al., 2001; Ong
et al., 2003) have been proposed. However, the kernel
estimation rely on an optimization of functionals that
will drastically penalize the response time of the re-
trieval system. For this reason, the estimation of σfi

is based on a less optimal but simpler heuristic, adapt-
ing the model to the query

σfi = C ·mediani(min
j
||d+

i − d−j ||2). (5)

In other words, the scale value in space dfi is set to
be proportional to the median of all the minimum dis-
tances between the negative and the positive examples
in that space. That way, the kernel becomes sharper
as the two classes become closer to each other. The
parameter C has been empirically set to 2.0.

4. Experimentations

Our multimodal interactive learning algorithm has
been systematically experimented in the context of the
video retrieval system we have developed. The seg-
mented video documents, their multimodal description
as well as manual annotations are stored in a database
that keeps synchronized all data and allows large-scale
evaluations of retrieval results.

The experimentation consists in making queries cor-
responding to annotated concepts and measuring the
average precision (ratio of relevant documents in the
retrieved list averaged over 50 queries) for retrieved
lists of various lengths. The annotated positive exam-
ples are removed from the hitlist so that they are not
taken into account when measuring the performance.

4.1. The video database

We use the complete annotated video corpus
TRECVid-2003 composed of 133 hours of CNN and
ABC news. Videos are segmented into shots and
every shot has been annotated by several concepts.
The speech transcripts extracted by Automatic Speech
Recognition (ASR) at LIMSI laboratory (Gauvain
et al., 2002) are also available.

We extracted the three following features from the
37’500 shots composing the corpus: Color histogram,
Motion vector histogram and Word occurrence his-
togram (after stemming and stopping). The distance
measures used are Euclidean for Color and Motion
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histogram and intersection for Word occurrence his-
togram.

4.2. Results

We first test the validity of the monomodal dissimi-
larity space defined in section 2.2. We compare the
precision of the retrieval when the classification is per-
formed in the color feature space and in the corre-
sponding dissimilarity space. Figure 2 shows results
for two queries corresponding to two annotated con-
cepts (Basketball and Studio setting). Whatever the
size of the training set, the precision at the 100th posi-
tion of the retrieval list is better when the dissimilarity
space is used. It is important to note that the improve-
ment becomes more important when the training set
is small: when the class distributions to estimate are
severely under-sampled (small training set), the sim-
plification of the classification problem implied by the
dissimilarity space (see section 2.2) is crucial for the
success of the training stage.

We now evaluate how the combination of modalities
may improve the retrieval efficiency. Figure 3 com-
pares the average precision for several concepts when
the query is learned in the monomodal spaces and in
the multimodal space. We can observe that, even for
queries where the raw features used are not well-suited
(Car and Desert), the combination of the three modal-
ities performs better than considering them separately.
The precision graphs also compare the algorithm with
a random retrieval (e.g seeking hits at random within
the database). This comparison illustrates the capabil-
ity of the algorithm to use low-level multimodal infor-
mation to create models of semantic concepts defined
by user. This improves drastically the performance of
the search.

The following experiment tests how the retrieval preci-
sion evolves when the number of positive and negative
documents grows. As figure 4 shows, the precision of
the retrieval increases with the size of the training set
until a point where adding more examples does not
improve the performances anymore. This behavior il-
lustrates how the users, by providing more and more
examples (relevance feedback loop), can refine their
queries until reaching the optimum of the classifier.

Finally, since we act in an interactive setup, we were
interested in the computation time problem. The fol-
lowing measures (table 1) have been done on a PIV
2GHz and include the time to access the dissimilar-
ity matrices (37500×37500), the building of the mul-
timodal dissimilarity space and the training of the
Fisher classifier. As the dimensionality of the repre-
sentation space linearly depends on the number of pos-

Table 1. Response time

Neg. examples 20 100
Pos. examples 5 10 40 10
Resp. time (s) 1.4 2 7.4 4.3

itive examples, the response time increases according
to their number. On the other hand, negative exam-
ples have less influence since they are just involved in
the learning process.

5. Conclusion

We have presented a retrieval strategy for video doc-
uments. Based on a multimodal dissimilarity space
associated to a non-linear discriminant analysis, the
algorithm is able to take benefit from low-level multi-
modal descriptions of video documents and, as a conse-
quence, to learn semantic queries from a limited num-
ber of input examples. The design of the dissimilarity
space has been achieved so as to simplify the classifi-
cation problem while building a low-dimensional rep-
resentation of the data. The use of the positives exam-
ples as a representation set transforms the 1+x setup
into a binary classification problem. Sophisticated
learning machines, such as the kernel Fisher discrimi-
nant analysis, can then directly be applied to classify
data. As a result, semantic concepts are learned with
more efficiency and queries on large databases are pro-
cessed near real-time which authorizes the use of feed-
back loop as a search paradigm. Extensive evaluations
on the TRECVid-2003 benchmark show the efficiency
and the usability of the proposed multimodal space
and fusion algorithm to retrieve documents within a
large corpus of videos.

While the presented classification scheme has proved
its value, the actual features considered to characterize
the videos do not permit us to design a fully-capable
and efficient video retrieval system. The design of
new feature extractors related to new modalities (e.g.
audio stream) and higher-level aspects of the content
(e.g. face and object detection) is still a major issue.
The addition of information sources should leads us
to investigate more deeply the problems of the multi-
modal kernel design and setting as well as to determine
the limits of the fusion scheme when a large number
of features is used.
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Figure 3. Average precision vs. length of retrieved lists for monomodal and multimodal dissimilarity spaces. The query is
composed of 5 positive examples (annotated by the concept) and 20 negative examples randomly selected in the database.
The “random guess” line is equal to the proportion of the concept in the database.
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Figure 4. Average precision at 100 when positive examples and negative examples increase (np = nn). Color, motion and
ASR features are used.


