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1 
Abstract—This paper introduces the general purpose Gaussian 

Transform of distributions, which aims at representing a generic 
symmetric distribution as an infinite mixture of Gaussian 
distributions. We start by the mathematical formulation of the 
problem and continue with the investigation of the conditions of 
existence of such a transform. Our analysis leads to the 
derivation of analytical and numerical tools for the computation 
of the Gaussian Transform, mainly based on the Laplace and 
Fourier transforms, as well as of the afferent properties set (e.g. 
the transform of sums of independent variables). 
The Gaussian Transform of distributions is then analytically 
derived for the Gaussian and Laplacian distributions, and 
obtained numerically for the Generalized Gaussian and the 
Generalized Cauchy distribution families. 
In order to illustrate the usage of the proposed transform we 
further show how an infinite mixture of Gaussians model can be 
used to estimate/denoise non-Gaussian data with linear 
estimators based on the Wiener filter. The decomposition of the 
data into Gaussian components is straightforwardly computed 
with the Gaussian Transform, previously derived. The estimation 
is then based on a two-step procedure, the first step consisting in 
variance estimation, and the second step in data estimation 
through Wiener filtering. To this purpose we propose new 
generic variance estimators based on the Infinite Mixture of 
Gaussians prior. It is shown that the proposed estimators 
compare favorably in terms of distortion with the shrinkage 
denoising technique, and that the distortion lower bound under 
this framework is lower than the classical MMSE bound. 
 

Index Terms—Gaussian mixture, Gaussian Transform of 
distributions, Generalized Gaussian, denoising, shrinkage 

I. INTRODUCTION 
Gaussian distributions are extensively used in the (broad 

sense) signal processing community, mainly for computational 
benefits. For instance, in an estimation problem Gaussian 
priors yield quadratic functionals and linear solutions. In rate-
distortion and coding theories, closed form results are mostly 
available for Gaussian source and channel descriptions [11]. 
However, real data is most often non–Gaussian distributed, 
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and is best described by other types of distribution (e.g in 
image processing, the most commonly used model for the 
wavelet coefficients distribution is the Generalized Gaussian 
distribution [6]). The goal of the work presented in this paper 
is to describe non-Gaussian distributions as an infinite mixture 
of Gaussian distributions, through direct computation of the 
mixing functions from the non-Gaussian distribution. 

In a related work [4], it was proven that any distribution can 
be approximated through a mixture of Gaussian up to an 
arbitrary level of precision. However, no hint was given by 
the author on how to obtain the desired mixture in the general 
case. In the radar community the problem of modeling non-
Gaussian radar clutters led to the theory of Spherically 
Invariant Random Processes (SIRP) [13], which aimed at 
generating non-Gaussian multivariate distributions using 
univariate Gaussian distributions. However, the proposed 
solutions bypassed the mixing function ([12] and references 
therein), performing direct computation of the multivariate 
non-Gaussian distribution from the marginal probability 
distribution function and the desired covariance matrix. In [5], 
an analytical formula is given for an infinite mixture of 
Gaussians equivalent to the Laplacian distribution, and used in 
a source coding application. Unfortunately, no generalization 
was attempted by the authors. The work presented here has 
the roots in their proof and extends the concept through the 
introduced Gaussian Transform of distributions, which 
permits straightforward derivation of exact mixing functions 
for a wide range of symmetric distributions, including the 
Generalized Cauchy and the Generalized Gaussian 
distributions. 

In order to exemplify the possible usage of the transform 
we consider then the problem of estimation/denoising, 
motivated by works such as [9] and [10], where, in order to 
preserve the computational advantages provided by Gaussian 
modelling, non-Gaussian distributions are approximated with 
finite Gaussian mixtures obtained through iterative numerical 
optimization techniques. Relying on the Gaussian Transform, 
we propose new generic algorithms for denoising non-
Gaussian data, based on the description of non-Gaussian 
distributions as an Infinite Mixture of Gaussians (IMG). 

The rest of the paper is divided in three main sections. In 
Section II we define the Gaussian Transform, analyze its 
existence, investigate its properties and derive the 
mathematical tools for analytical and/or numerical 
computation. In Section III we exemplify both the transform 
for some typical distributions such as Generalized Gaussian 
and Generalized Cauchy, and some of the properties deduced 
in Section II. The last section tackles the problem of 
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estimation/denoising and proposes new Gaussian Transform 
based denoising schemes, exemplifying them for the 
Generalized Gaussian Distribution (GGD) family. The 
obtained results are compared in terms of distortion with the 
state-of-the-art denoising method of Moulin and Liu [7]. 

II. THE GAUSSIAN TRANSFORM OF DISTRIBUTIONS 

A. Definition and existence 
We consider a generic symmetric continuous distribution 

p(x). As we are aiming at representing it through an infinite 
mixture of Gaussians, we can safely disregard the mean, and 
assume for simplicity reasons that p(x) is zero-mean. We are 
looking for an integral representation in the form: 

 ( ) ( ) ( )2 2 2

0

| , G x d p xσ σ σ
∞

=∫ N  (1) 

where ( )2|x σN  is the zero-mean Gaussian distribution: 
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and ( )2G σ  is the mixing function that should reproduce the 

original p(x). We can now introduce the Gaussian Transform. 

Definition 1: Gaussian Transform. The direct Gaussian 
Transform G is defined as the operator which transforms 

( )p x  into ( )2G σ , and the Inverse Gaussian Transform G-1 is 

defined as the operator which maps ( )2G σ  back to ( )p x : 

 ( ) ( ) ( ) ( )2 1 2: ;  : .p x G G p xσ σ−G G  

Obviously, G-1 is simply given by (1): 

 ( )( ) ( ) ( ) ( )1 2 2 2 2

0

|G G x d p xσ σ σ σ
∞

− = =∫G N . (2) 

The Gaussian Transform of a distribution exists if, given 
( )p x , a mixing distribution ( )2G σ  can be found such as to 

comply with (1). This can be summarized in three conditions. 

Condition 1. For a given p(x), a function ( )2G σ  defined 

according to (1) exists. 
Condition 2. This function is non-negative. 

Condition 3. Its integral ( )2 2

0

G dσ σ
∞

∫  is equal to 1. 

The last condition is a consequence of Condition 1. Indeed, if 
( )2G σ  exists, then integrating both sides of (1) with respect 

to x and inverting the integration order one obtains: 
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Finally, since ( )2|x σN  is a distribution: 

 ( )2 2

0

1G dσ σ
∞

=∫ . 

In order to investigate Condition 1, the existence of ( )2G σ , 

we perform the following variable substitutions: 2s x=  and 

2

1
2

t
σ

= . Since p(x) is symmetric, it can be rewritten as: 

 ( ) ( ) ( )p x p x p s= = . 

The left hand side of (1) transforms to: 

 ( ) ( )2 2 2

0 0
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According to the definition of the Laplace Transform L [1], 
equation (1) finally takes the form: 

 ( )1 1 1
2 2

G p s
t t tπ
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L . (3) 

Thus, ( )2G σ  is linked to the original probability distribution 

p(x) through the Laplace Transform and can be computed 
using the Inverse Laplace Transform L-1. The direct Gaussian 
Transform is therefore given by:  

 ( )( ) ( )( )( )( )
2
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π
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−

=
=G L , (4) 

and the Inverse Gaussian Transform can be computed as: 
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Consequently, the existence of the Gaussian Transform is 
conditioned by the existence of the Inverse Laplace Transform 
of ( )p s . Using the general properties of the Laplace 

Transform, it is sufficient [1] to prove that the limit at infinity 
of ( )s p s⋅  is bounded, or equivalently : 

 ( )2limx x p x→∞ ⋅ < ∞ . (6) 
The above condition is satisfied by all the distributions from 
the exponential family, as well as by all the distributions with 
finite variance. 
The equation (4) allows for straightforward identification of 
Gaussian Transforms for distributions whose Laplace 
Transforms are known, by simply using handbook tables. 
Unfortunately, the condition (6) does not guarantee 
compliance with the Condition 2: non-negativity. As it is 
rather difficult to verify a priori this constraint, the test should 
be performed a posteriori, either analytically or numerically. 
However, by imposing the non-negativity constraint in (1), 
one can see that it is necessary to have a strictly decreasing 
distribution function p(x) on positive x, as p(x) is described by 
a sum of strictly decreasing zero-mean Gaussians functions. 
From the same reason, but not related to non-negativity, the 
distribution function p(x) should also be of class C∞. 

B. Properties of the Gaussian Transform 

Property 1: Uniqueness. If two functions ( )2
1G σ  and 



( )2
2G σ  exist such that ( )( ) ( )1 2

1G p xσ− =G  and 

( )( ) ( )1 2
2G p xσ− =G  then they are identical 

( ) ( )2 2
1 2G Gσ σ= . Conversely, if two distribution 

probabilities ( )
1Xp x  and ( )

2Xp x  have the same Gaussian 

Transform ( )2G σ  then they are identical. 

Proof. The second proposition of the uniqueness property is 
proved straightforwardly using (1). In what concerns the first 
proposition, it is a direct consequence of the uniqueness of the 
Laplace Transform [1], which states that if two functions have 
the same Laplace transform, then they are identical. It is then 
sufficient to observe that 1−G  is computed as a Laplace 
Transform (5).  

Property 2: Mean Value (variance conservation). The 
mean value of the Gaussian Transform is equal to the variance 
of the original distribution. 
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Proof. ( ) ( ) ( )2 2 2 2 2

0

|x p x dx x G x d dxσ σ σ
∞ ∞ ∞

−∞ −∞

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
∫ ∫ ∫ N  

( ) ( ) ( )2 2 2 2 2 2 2

0 0

|  q.e.d.G x x dx d G dσ σ σ σ σ σ
∞ ∞ ∞

−∞

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
∫ ∫ ∫N  

Property 3: Value at infinity. If ( )2limx x p x→∞ ⋅ < ∞  then 

the Gaussian Transform tends to 0 when 2σ  tends to infinity: 
 ( )2

2lim 0G
σ

σ
→∞

= . (8) 

Proof. We use the initial value theorem for the Laplace 
Transform [1] and the direct formula (3): 
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We study now the influence of  basic operations on the 
Gaussian Transform, such as scalar multiplication and  
addition of independent variables. 

Property 4: Scaling. If X1 and X2 are random variables 
such that 2 1X Xα=  and ( )( )1 1X Xp x G=G , then the Gaussian 

Transform corresponding to the scaled variable X2 is a scaled 
version of 

1XG : 

 ( )
2 1

2
2
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1
X XG G σσ

α α
⎛ ⎞
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 (9) 

Proof. We begin by observing that the distribution probability 
of the random variable X2 can be expressed as:  

 ( )
2 1

1
X X

xp x p
α α

⎛ ⎞= ⎜ ⎟
⎝ ⎠

. 

Then we compute the Inverse Gaussian Transform of the 
expression proposed in (9) using (2): 
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Finally using the uniqueness property we conclude that the 
Gaussian Transform ( )( )2Xp xG  is unique and given by (9). 

Property 5: Convolution. If X1 and X2 are two independent 
random variables with ( )( ) ( )

1 1

2
X Xp x G σ=G  and 

( )( ) ( )
2 2

2
X Xp x G σ=G , then the Gaussian Transform of their 

sum is the convolution of their respective Gaussian 
Transforms (the result can be generalized for the sum of 
multiple variables): 
 ( )( ) ( ) ( )

1 2 1 2

2 2
X X X Xp x G Gσ σ+ = ∗G . (10) 

Proof. Consider the random variable 1 2X X X= + . Since 
1XG  

exists, X1 is a random Gaussian variable with variance 
1

2
Xσ  

distributed according to the distribution probability 
1XG . 

Similarly, X2 is a random Gaussian variable with variance 

2

2
Xσ  distributed according to 

2XG . Then X is also a random 

Gaussian variable with variance
1 2

2 2 2
X X Xσ σ σ= + . But 

1

2
Xσ  and 

2

2
Xσ  are independent variables drawn from 

1XG  and 
2XG . It 

follows that 2
Xσ  is a random variable described by the 

probability distribution 
1 2X X XG G G= ∗ , q.e.d. 

Corollary. If X1 and X2 are independent random variables 
and X2 is Gaussian distributed ( ) ( )2 2

2|X Xp x x σ= N , then the 

Gaussian transform of their sum is a shifted version of 
1XG : 
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X
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X X X

G
G

σ σ
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C. Numerical computation 
The computation of the Gaussian Transform for 

distributions not available in handbooks is still possible 
through the complex inversion method for Laplace 
Transforms known as the Bromwich integral [3]: 

 ( )( ) ( )1 1
2

i
ut

i

f s f u e du
i

ε

επ

+ ∞
−

− ∞

= ∫L , (12) 

where ε is a real positive constant satisfying 
( )( )( )sup Re poles fε >  and u is an auxiliary variable. The 

equation (12) can be rearranged as a Fourier Transform, 
allowing the use of the numerous numerical and/or symbolical 
packages available ( ω is the variable in the Fourier space): 
 ( )( ) ( )( )1 1tf s e f iε ε ω− −= +L F . (13) 

Very often p(x) has no poles, being a continuous and bounded 



function, and in this case it might be very practical to evaluate 
(13) in the limit case 0ε → . Using (4) and (13): 

 ( ) ( )( )( )( )
2

2 1
2 2 1

2

1
2 t

G p i t
σ

πσ ω
σ σ

−

=
= F . (14) 

When the original distribution is only numerically known, 
approximation of ( )2G σ  is still possible either through 

analytical approximations of p(x), followed by (4) or (14), or 
through solving the inverse problem yielded by (1), or through 
real inversion of the Laplace transform using (4). The 
accuracy of the obtained transforms can then be assessed 
using an appropriate metric or distance such as Kullback-
Leibler. However, the abovementioned approximation 
methods and the accuracy study constitute stand-alone 
problems out of the scope of the present paper. 

III. EXAMPLES OF GAUSSIAN TRANSFORMS 

A. Analytic Gaussian transforms 
The most obvious and natural example is the Gaussian 

Transform of a Gaussian distribution ( )2
0|x σN . One would 

expect to have (with δ  the Dirac function): 
 ( )( ) ( )2 2 2

0 0|x σ δ σ σ= −G N . (15) 

Proof. It is trivial that (15) verifies the equation (1). Then, by 
using the uniqueness of the Gaussian Transform one can 
conclude that the Gaussian Transform of a Gaussian 
distribution ( )2

0|x σN  is a Dirac function centered in 2
0σ . 

The convolution property (10) can now be used to prove a 
well known result in statistics: the sum of two independent 
Gaussian variables, with respective probability laws 

( )1

2| Xx σN  and ( )2

2| Xx σN , is another Gaussian variable with 

probability distribution ( )1 2

2 2| X Xx σ σ+N  (the extension to 

non-zero mean distributions is trivial). Proof: 
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p x p x
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δ σ σ δ σ σ
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G G

G G G

Then, inverting the Gaussian Transform: 
 ( )( )( ) ( )1 2 1 2 1 2

1 2 2 2 2 2|X X X X X Xp xδ σ σ σ σ σ−
+ = − + = +G N . 

Similarly to (15), it is possible to compute the Gaussian 
Transforms of other usual symmetric distributions using the 
Laplace transform tables [1]. We exemplify with the 
Laplacian and Cauchy distributions. 
Laplacian distribution: 
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2

22
2

| ; |
2 2

| .
2

X X

X
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 (16) 

As mentioned, the result (16) was already proven in [5]. 
Cauchy distribution: 
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X X

X

C C

b
C

b bp x b p s b
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π π
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The results (15), (16) and (17) are plotted in Fig. 1. 
To exemplify the Corollary to the Convolution Property, 
consider now Cauchy data contaminated with independent 
additive white Gaussian (AWG) noise. Then the Gaussian 
Transform of the measured data (Fig. 2) is a shifted version of 
the original data transform (11). 

 
Figure 1. Gaussian Transforms of the Laplacian, Gaussian and 

Cauchy distributions 

 
Figure 2. Shift of the Gaussian Transform following data 

contamination with AWG noise 
The previous analytical results will be generalized in 

subsection B through numerical computations. 

B. Numerical computation of Gaussian Transforms 
This part illustrates the numerical computation of the 

Gaussian Transform through (14) for the Generalized 
Gaussian and Generalized Cauchy distributions families. 

1) Generalized Gaussian Distribution (GGD) 
The GGD family is described by an exponential probability 

density function with parameters γ and γσ : 

 ( ) ( )

( )
( )1| ,

12
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G xp x e
γ

γ
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σ σ
γ
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, (18) 

where ( ) ( ) ( ) 1
3 1η γ γ γ

−

= Γ Γ . For 1γ =  the GGD 

particularizes to the Laplacian distribution, while for 2γ =  
one obtains the Gaussian distribution. The Gaussian 
Transform of the Generalized Gaussian distribution can not be 
obtained in analytical form using (4). However, it does exist 
(6) and can be calculated numerically through (14): 
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The Gaussian Transforms for γ ranging from 0.5 to 2 with 
fixed 1γσ =  are plotted in Fig. 3. The transforms evolve from 
a Dirac-like distribution centered on 0 for small γ to 
exponential for 1γ = , then Rayleigh-like for 1.2γ = , bell-
shaped for 1.5γ =  and again Dirac-like centered at 2

γσ  for 
2γ = . As expected, the Gaussian Transform of the Laplacian 

distribution ( 1γ = ) is exponential (16). 

 
Figure 3. Gaussian Transforms of GGD 

Unfortunately, the real part of the complex probability 
function diverges for periodical values of γ, which impedes 
the computation of the transform through this method for γ >2. 
However, real data (in transform domains such as discrete 
cosine and wavelet) is mostly confined to 0<γ<2 [6]. 

2) Generalized Cauchy Distribution (GCD) 
The GCD probability density function is given by 

 ( )
( )

( ) ( )
2

0.52 2

1
2| ,C

x
bp x b

b x

ν

ν

ν
ν

π ν +

Γ +
=

Γ +
, 

and it particularizes to the Cauchy distribution for 0.5ν = . Its 
Gaussian Transform can be computed through: 
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( )

( )( )( )
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2
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Corresponding plots are given in Fig. 4. 

 
Figure 4. Gaussian Transforms of GCD 

As a remark, the variance of the Cauchy distribution being 
infinite, its Gaussian Transform has infinite mean value (7). 
The GCD family possesses finite variance only for 1ν > . 

IV. DENOISING 
We are interested in the generic denoising problem of 

estimating the original scalar data x from the measured data y, 
degraded by additive noise z: 
 y x z= + . (19) 

We assume that the noise random variable Z is zero-mean 
Gaussian distributed with variance 2

Zσ : 

 ( )
2

22

2

1

2
Z

z

Z

Z

p z e σ

πσ

−

= . (20) 

We further assume that the probability density function  
pX(x), which describes the source random variable X, is a zero-
mean symmetric distribution, and that its Gaussian Transform 

( ) ( )( )2
X XG p xσ = G  exists. For exemplification of the 

proposed techniques we consider pX(x) to be the Generalized 
Gaussian distribution (18). 

We base our estimation on the Maximum a Posteriori 
(MAP) principle [14]: 
 ( )|ˆ arg max |x X Yx p x y= , 
which yields for i.i.d. zero-mean Gaussian data and noise 
(with variances 2

Xσ  and 2
Zσ ) the classical Wiener filter: 

 
2

2 2
ˆ X

X Z

x y
σ

σ σ
=

+
. (21) 

We also note that the estimate (21) is also the Minimum Mean 
Square Error (MMSE) estimate for i.i.d. zero-mean Gaussian 
data and noise: 

 
( ) ( )

( )

2
MMSE |

MMSE |

ˆ ˆarg min |

ˆ |

x X Y
x

X Y
x

x x x p x y dx

x xp x y dx

= −

=

∫

∫
. (22) 

According to the IMG model, each data sample is 
interpreted to be drawn from a Gaussian distribution with 
variance 2

Xσ  distributed accordingly to the Gaussian 

Transform ( )2
XG σ . Consequently, using the prior 

knowledge of ( )2
XG σ , we can estimate the variance from y 

and use Wiener filtering (21). Thus, our estimator is given by: 

 
( )
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2

2 2
ˆ X

X Z

y
x y

y
σ

σ σ
=

+
. (23) 

The initial problem is now reduced to a variance estimation 
problem. For this purpose, we begin by introducing the 
cumulative estimation technique. 

A. Cumulative Estimation 
We are looking for an estimator that provides variance 

estimates consistent with the original data distribution, in the 
sense that the description of the data as a Gaussian mixture 
should be identical to the non-Gaussian original description. 
We set the above assertion as a consistency principle. 



Principle 1: Consistency. The probability distribution 
function of the variance estimate should be identical to the 
Gaussian Transform of the prior distribution pX(x). 

Moreover, since the distributions pX(x), pZ(z) are symmetric 
and zero-mean, we assume an estimator of the form: 
 ( ) ( )( )2

2ˆ
X

X y y
σ

σ ξ= M M , 

where 2
Xσ

ξM  denotes the consistent variance estimator 

depending on the symmetric real non-negative function: 
 ( ) ( )0: ;  y y+ = −M M M , 

where  and 0+  denote real, respectively real nonnegative 
numbers. As an example, a possible M function is the 
absolute value of y. We further assume that this estimator is 
monotonically increasing with the function M: 

 ( ) ( ) ( )( ) ( )( )2 21 2 1 2
X X

y y y y
σ σ
ξ ξ< ⇒ <M MM M M M . (24) 

If one chooses the M function as the absolute value y , 
this simply means that if the absolute value of y is larger, then 
the estimated variance ( )2ˆX yσ  is also larger. If the variables 
are vectors (e.g. local estimation paradigm) one can similarly 
use as the M function the variance of the measurement 
vector, and (24) would mean that if the variance of the 
measurement is larger, then the estimated variance is also 
larger. 

The assumption in (24) implies that the cumulative 
distribution function of the variance estimates is equal to the 
cumulative distribution function of M: 

 ( )( ) ( )( )2 2ˆ ˆX Xp y p yσ σ≤ = ≤M M . (25) 

Considering continuous probability density functions and 
incorporating the consistency condition (the distribution of the 
estimates should be identical to GX), (25) can be rewritten as: 
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=

= =∫ ∫

M
M

M

M M

M M

M
(26) 

where pM  is the probability density function describing 

( )yM , and PM  and XPG  are cumulative probability 
functions, as defined in (26). Then the estimator we are 
looking for is simply given by: 
 ( )( ) ( )( )( )2

1

X
Xy PG P y

σ
ξ −=M

MM M , (27) 

where 1
XPG−  is the mathematical inverse of the function PGX: 

 ( ) ( )2 1 2if  then X XPG u PG uσ σ−= = . 

We denote (27) as the cumulative estimator, simply because it 
uses cumulative probability functions for the estimation. 
We further infer that the cumulative estimator is robust with 
respect to monotonically increasing transformations of M. 

Theorem 1. If M1 and M2 are two symmetric real non-
negative functions 0

1 2, : +M M , and if 
 ( ) ( ) ( ) ( )1 1 1 2 2 1 2 2y y y y< ⇔ <M M M M , 
then the associated cumulative estimators are identical: 

 ( )( ) ( )( )1 2
2 21 2
X X

y y
σ σ
ξ ξ=M MM M . 

Proof. Since the inequalities are preserved (theorem 
hypothesis), then the cumulative distribution functions 

1
PM  

and 
2

PM  are equal: 

( )( ) ( )( )
( )( ) ( )

( )

( )
( )

( )( )
2

1 1 2 2

1

1 1 2 2

1 2
0 0

 then
yy

p y p y

P y p u du p u du P y

≤ = ≤

= = =∫ ∫
M M

M M M M

M M M M

M M
. 

The proof is ended by corroborating the above equality with 
the cumulative estimation formula (27). 

B. IMG cumulative estimator 
The cumulative estimator (27) can be directly used in (23) 

by setting the M function as ( )y y=M , and the IMG 
cumulative estimator (IMG CE) is simply: 
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( )

( ) ( )( ) ( ) ( )

2
_

_ 2 2
_

2 1
_
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ˆ
ˆ  with

ˆ
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X CE
IMG CE
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y
x y

y

y PG P y P y p u du

σ
σ σ

σ −

=
+

= = ∫M M

 (28) 

As X and Z are assumed to be independent, pY(y) can be 
computed as the convolution of pX(x) and pZ(z): 
 Y X Zp p p= ∗ . 
In the general case the operations in (28) have to be performed 
numerically. However, if the distribution pX(x) is Laplacian 
(GGD with 1γ = ), its Gaussian Transform is (16), (18): 

 ( )
2

22
| , 2

1G
XG e γ

γ

σ
σ

γ σ
γ

σ
σ

−

= , (29) 

and the cumulative estimator from (28) reduces to: 
 ( ) ( )( )2 2

_ , 1 ln 1X CE y P yγ γσ σ= = − − M . (30) 

As γ  tends to 2, the Gaussian Transform of the GGD tends 
asymptotically to a Dirac function centered at 2

γσ  (15), and 
the estimator (28) to the classical Wiener filter (21). In order 
to asses the performances of the proposed estimators we 
measure the accuracy of the estimate according to the L2 
norm: 
 ( ) ( )2ˆ ˆ,e x x x x= − . 
The global distortion induced by an estimator is therefore: 
 ( ) ( ) ( )ˆ, X ZD e x x p x p z dxdz= ∫∫ . (31) 

We compare our estimator in terms of distortion with the 
estimators known as shrinkage functions from [7]. The idea of 
shrinking originates from [8], but [7] provides both improved 
results and statistical interpretation of the functions. In fact, 
the shrinkage functions from [7] are the result of direct MAP 
estimation, which in the case of GGD data and Gaussian noise 
yields x̂  as the solution of the equation in x: 
 ( )2 1

Zy x xγ γ
γσ σ γη γ− −= − . (32) 

Equation (32) has analytical solutions for 0.5γ =  (cubic), 
1 or 2γ =  (linear) and 1.5γ =  (quadratic). The resulting 

shrinkage functions have thresholding characteristics for 



1γ ≤  and yield the Wiener filter for 2γ = . The equivalent 
IMG CE functions do not present thresholding characteristics 
for any γ , behaving in continuous manner. Graphic 
illustration of the shrinkage functions and of the equivalent 
IMG CE functions obtained via (28) are presented in Fig. 5. 

 
Figure 5. Shrinkage functions and IMG CE estimation curves 
One can also compute the lower bound on the distortion 

induced by an estimation procedure based on signal 
decomposition into an IMG. Assuming that the Gaussian 
components of the IMG are separable, and that the variance 
estimate is constant over each separate component, the 
equation (21) is the MMSE estimate for each component. The 
bound is attained when the estimator "knows" the Gaussian 
component of the mixture that has generated the estimated 
sample. The ensuing distortion lower bound is: 

 ( )
2 2

2 2
lower bound 2 2

Z
X

Z

D G d
σ σ

σ σ
σ σ

=
+∫ , (33) 

where the ratio 
2 2

2 2
Z

Z

σ σ
σ σ+

 is the theoretical distortion of the 

MMSE filter (21). We also compare our results with the 
MMSE distortion bound, given by the MMSE estimator (22), 
which can be rewritten as follows: 

( ) ( ) ( )
2

2 2 2
MMSEˆ | | , |

x x

x xp x y dx x p x y p y d dx
σ

σ σ σ
⎛ ⎞

= = ⎜ ⎟⎜ ⎟
⎝ ⎠

∫ ∫ ∫ . 

Using Bayes rule and switching integrals, one obtains: 

 ( ) ( ) ( )
( )2

2 2
2 2

MMSE

|
ˆ | ,

x

p y p
x xp x y dx d

p yσ

σ σ
σ σ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∫ ∫ . 

Considering Gaussian noise the first parenthesis yields the 
MMSE estimate (21), and by integrating the Gaussian 
Transform and developing ( )2|p y σ  and ( )p y  one finds: 
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∫

∫

N

N
. (34) 

The MMSE distortion bound is then computed by plugging 
the result (34) into (31). The IMG lower bound (33) and the 
MMSE bound (34) are superposed in Fig. 6, which displays 
the distortion of the estimation (31) as a function of the signal 

to noise ratio 
2

10 2SNR 10log
Z

γσ
σ

=  (the variance of the GGD 

family is given by 2
γσ , see the moments method from [6] and 

equation (18)). One may notice that the IMG lower bound is 
lower than the MMSE bound, a result due to the assumption 

of separable IMG components. In fact, for a given y, the 
MMSE estimator is unique (injective estimation), which is not 
the case for the ideal estimator that would lead to the proposed 
IMG lower bound, and that would yield, for the same value of 
y, different estimates for each isolated Gaussian component. 

 

 

 
Figure 6. Distortion for GGD data as a function of SNR (dB) 

A considerable difference in performance in the favor of IMG 
CE with respect to the shrinkage functions is observed for 

0.5γ = . The difference tends to decrease for larger γ , and 
inverts for 1.5γ = , albeit with a very small relative module. 
However, the IMG CE estimator being unique for a given y, 
the IMG CE distortion curve necessarily remains above the 
MMSE bound, as for any other injective estimator. All curves 
tend to the distortion of the Wiener filter when γ  approaches 
2, plotted dashed-dotted in Fig.2 on the graph corresponding 
to 1.5γ = . 

C. IMG ML and MAP variance estimation 
The simplest way of obtaining the variances in a statistical 

framework is through Maximum Likelihood (ML) estimation: 
 ( )2

2 2
_ˆ arg max |X ML p y

σ
σ σ⎡ ⎤= ⎣ ⎦ , (35) 

which for zero-mean independent Gaussian source and noise 
data yields the solution: 
 ( )2 2 2

_ˆ max ,0X ML Zyσ σ= − . (36) 

If the variance distribution were known, one could improve 
(36) through MAP estimation. Using the Gaussian Transform 
the MAP variance estimate is: 
 ( ) ( )2

2 2 2
_ˆ arg max |X MAP XG p y

σ
σ σ σ⎡ ⎤= ⎣ ⎦ . (37) 



Generally, the expression (37) requires numerical 
maximization, but an analytical form exists for 1γ =  and 
Gaussian noise (using (29) and differentiation of (37)): 
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y
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σ

=

⎛ ⎞
⎜ ⎟
⎜ ⎟= −⎜ ⎟
+ +⎜ ⎟⎜ ⎟

⎝ ⎠

. (38) 

One would expect the IMG MAP estimator to behave 
similarly to the original shrinkage functions of Moulin and 
Liu, as it applies the MAP principle two times (37), (23) to 
obtain an indirect estimate, whereas the shrinkage functions 
are the result of direct MAP estimation (32). This is confirmed 
in Fig. 7, which compares the equivalent shrinkage functions 
of the IMG ML and IMG MAP estimators with the IMG CE 
curve and with the Moulin and Liu curve for 1γ = . 

 
Figure 7. IMG ML and MAP equivalent shrinkage functions 
Unlike the IMG CE estimator, the two proposed IMG ML 

and MAP estimators do present thresholding characteristics, 
and, as expected, the equivalent IMG MAP curve behaves 
very similarly to the original shrinkage curve. 

We tested empirically the MAP (38) estimator by 
generating 1D Generalized Gaussian data of length N=106 
with 0.5γ =  and 1γ = , adding independent white Gaussian 
noise, and performing denoising according to (21). The source 
and noise probability densities were assumed to be known, 
and the corresponding distortion was computed as the mean 
square error (Fig. 8). We also tested the cumulative estimator 
(28) and the shrinkage function (32). 

 

 
Figure 8. Empirical distortion curves 

As expected, empirical results reproduce the theoretical 
results obtained for the scalar estimators (Fig. 6). The IMG 
MAP results are close, but above the direct MAP estimation of 
the shrinkage functions for 1γ =  (this result was predictable 
from the curves in Fig.7), however they notably improve on 
the Moulin and Liu results for 0.5γ = . We expect the IMG 
MAP curves to remain above the Moulin and Liu curves for 

1γ ≥ , both falling slowly down to the Gaussian-Gaussian 
curve in Fig.6 as the IMG MAP estimator tends to the Wiener 
filter for 2γ = . 

While the IMG MAP estimator does not outperform the 
cumulative estimator, nor the shrinkage estimator for 1γ ≥ , 
and while the IMG CE estimator does not outperform the 
classical MMSE estimate, the linear nature of the estimator 
(23), coupled with the simple analytical forms (38) and (30) 
for 1γ = , allowed the successful use of the IMG MAP and 
IMG CE estimators in the highly underdetermined EEG 
(electroencephalogram) inverse problem [15] with Laplacian 
prior, where a direct application of the MAP principle would 
lead to an underdetermined quadratic programming problem, 
and where a direct application of the MMSE principle would 
lead to highly expensive computations. 

V. CONCLUSION AND FUTURE WORK 
We introduced in this paper the Gaussian Transform, which 

allows for the representation of symmetric distributions as an 
infinite Gaussian mixture. The scope of applicability of the 
Gaussian Transform is potentially very broad, from denoising 
and regularization to filtering, coding, compression, 
watermarking etc. However, an extension of the concept to 
non-symmetric distribution would be required for some 
specific applications. Further investigation of the existence 
conditions, especially non-negativity, is also necessary. 
Finally, one would need adapted numerical packages (most 
likely based on existing Laplace and Fourier transform 
computational packages) for the computation of Gaussian 
Transforms of both analytically and numerically defined 
distributions. 

We also presented in this paper various denoising 
algorithms based on the Infinite Mixture of Gaussians model. 
Their application to the denoising of Generalized Gaussian 
data showed significant improvements in terms of distortion, 
both theoretically and empirically, with respect to the 
shrinkage functions of Moulin&Liu. Also, the lower bound 
under the proposed IMG estimation framework is lower than 
the classical MMSE bound. 

However the potential of IMG based denoising is not yet 
fully explored, as the lower bound presented in this paper is 
still below current results. The estimation methods proposed 
may reach this lower bound in the case where the data is 
generated locally from the same Gaussian component, which 
would allow for exact variance estimation. 
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