
DENOISING WITH INFINITE MIXTURE OF GAUSSIANS 

Teodor Iulian Alecu, Sviatoslav Voloshynovskiy and Thierry Pun 

Computer Vision and Multimedia Laboratory, University of Geneva, 24 Rue Général-Dufour, 1204 Geneva, Switzerland 
phone: + (41) 22 379 1084, fax: + (41) 22 379 7780, email: Teodor.Alecu@cui.unige.ch

ABSTRACT 
We show in this paper how an Infinite Mixture of Gaussians 
model can be used to estimate/denoise non-Gaussian data 
with local linear estimators based on the Wiener filter. The 
decomposition of the data in Gaussian components is 
straightforwardly computed with the Gaussian Transform, 
previously derived in [2]. The estimation is based on a two-
step procedure, the first step consisting in variance estima-
tion, and the second step in data estimation through Wiener 
filtering. We propose new generic variance estimators based 
on the Infinite Gaussian Mixture prior such as the cumula-
tive estimator or the local-global estimator, as well as more 
classical Bayesian estimators. Results are presented in terms 
of distortion for the case of Generalized Gaussian data. 

1. INTRODUCTION 

Gaussian distributions are extensively used in the (broad 
sense) signal processing community, mainly for computa-
tional benefits. For instance, in an estimation/denoising prob-
lem Gaussian priors yield quadratic functionals and linear 
solutions. However, real data is most often non–Gaussian 
distributed, and is best described by other types of distribu-
tion (e.g in image processing, the most commonly used 
model for the wavelet coefficients distribution is the General-
ized Gaussian distribution [6]). 
In order to preserve the computational advantages provided 
by Gaussian modelling, in a number of papers (such as [4] 
and [5]), non-Gaussian distributions are approximated with 
finite Gaussian mixtures obtained through iterative numerical 
optimization techniques. We extend this approach and pro-
pose in this paper new generic denoising algorithms for non-
Gaussian data based on the description of non-Gaussian dis-
tributions as an Infinite Mixture of Gaussian (IMG), follow-
ing the work from [2]. Indeed, the Gaussian Transform, as 
presented therein, permits straightforward derivation of exact 
Infinite Gaussian Mixtures for a wide range of symmetric 
distributions, including the Generalized Cauchy and the Gen-
eralized Gaussian distributions. 
The paper is organized as follows. Section 2 presents the 
denoising framework used throughout the paper, whereas 
Section 3 introduces the specific cumulative estimation 
scheme. The last sections propose Gaussian Transform based 
estimators in both point to point and local estimation 
schemes, and exemplify them for the Generalized Gaussian 
Distribution (GGD) family. The obtained results are com-
pared in terms of distortion with the state-of-the-art (for the 
GGD) denoising method of Moulin & Liu [1]. 

2. DENOISING FRAMEWORK 

We are interested in the generic denoising problem of esti-
mating the original vector data x from the measured data y, 
degraded by additive noise z: 
 = +y x z . (1) 
We consider the components of the random vector variables 
to be independent identically distributed (i.i.d.), and we de-
note them by the index k (e.g. x[k]). We omit the index for 
simplicity reasons whenever the context allows it. 
We assume in this paper that the noise random variable Z 
(whose successive realizations form the vector z) is zero-
mean Gaussian distributed with variance 2

Zσ : 
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We further assume that the probability density function  
pX(x), which describes the source random variable X, is a 
zero-mean symmetric distribution, and that its Gaussian 
Transform ( ) ( )( )2

X XG pσ = G x  exists [2]. We recall that 

the Gaussian Transform G describes a symmetric distribution 
as an infinite mixture of Gaussians, and that XG  satisfies: 
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For exemplification of the proposed techniques we consider 
pX(x) to be the Generalized Gaussian distribution: 
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where ( ) ( ) ( ) 1
3 1η γ γ γ

−

= Γ Γ . For 1γ =  the GGD par-

ticularizes to the Laplacian distribution, while for 2γ =  one 
obtains the Gaussian distribution. The Gaussian Transform of 
the GGD is computed accordingly to [2]: 
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where  is the inverse Fourier Transform, i is the complex 1F
1−  and ω  is the variable in the Fourier space. 

We base our estimation on the Maximum a Posteriori (MAP) 
principle: 
 ( )|ˆ arg max |x X Yx p x y= , 
which yields for i.i.d. zero-mean Gaussian data and noise 
(with variances 2

Xσ  and 2
Zσ ) the classical Wiener filter: 
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We set the IMG estimation scheme into a local estimation 
paradigm. Let yk be the local vector of samples with cardinal-
ity m and centred on the point k, where the estimation is per-
formed (e.g. in image processing yk would be the samples 
collected from a square window around the point of interest). 
According to the IMG model, each data sample is interpreted 
to be drawn from a Gaussian distribution with variance 

[ ]2
X kσ

( 2
XG

 distributed accordingly to the Gaussian Transform 

)σ . Consequently, we model the data as locally Gaus-
sian, estimate the variance from yk and use Wiener filtering 
on the local level (5). Thus, our estimator is given by: 
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The initial problem is now replaced with a variance estima-
tion problem. To this purpose, we begin by introducing the 
cumulative estimation technique. 

3. CUMULATIVE ESTIMATION 

We are looking for an estimator that provides variance esti-
mates consistent with the original data distribution, in the 
sense that the description of the data as a Gaussian mixture 
should be identical to the non-Gaussian original description. 
Then the probability density function of the estimated vari-
ances needs to be identical to the mixing function that repro-
duces pX(x), which is the Gaussian Transform GX. 
Moreover, since the distributions pX(x), and pZ(z) are sym-
metric and zero-mean, we assume an estimator of the form: 
 ( ) ( )( )2
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Xσ

ξM  denotes the consistent estimator depending on the 

symmetric real non-negative function M : ( )ky
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k k
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As an example, a possible M function is the L2 (Euclidean ) 
norm of (see Section 4). We further assume that this esti-
mator is monotonically increasing with the function M: 

ky
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The assumption in (7) implies that the cumulative distribu-
tion function of the variance estimates is equal to the cumu-

lative distribution function of M: 
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For continuous probability density functions, and incorporat-
ing the consistency condition (the distribution of the esti-
mates is GX), (8) can be rewritten as: 
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where  is the probability density function describing pM
( )kyM , and  and PM XPG  are cumulative probability func-

tions, as defined in (9). Then the estimator we are looking for 
is simply given by: 
 ( )( ) ( )((2

1

X
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σ
ξ −=yM

MM ))yM , (10) 

with 1
XPG−  the mathematical inverse of the function PGX: 

 ( ) ( )2 1if  then X XPG u PG u 2σ σ−= = . 
We denote (10) as the cumulative estimator, simply because 
it uses cumulative probability functions for estimation. 
We can further infer that the cumulative estimator is robust 
with respect to monotonic increasing transformations of M. 
Theorem 1. If M1 and M2 are two symmetric real non-
negative functions M M , and if 0

1 2, : m +

 ( ) ( ) ( ) ( )1 1 1 2 2 1 2 2k k k< ⇔ < ky y yM M , y
then the associated cumulative estimators are identical: 
 ( )( ) ( )( )1 2

2 21 2
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k kσ σ
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Theorem 1 can be proven using (10). Indeeed, since the ine-
qualities are preserved (theorem hypothesis), then the cumu-
lative distribution functions  and  are equal (8). 
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4. POINT TO POINT ESTIMATION 

In point to point (scalar) estimation, the local vector of sam-
ples reduces to one data sample, which we simply denote as 

[ ]k y k y= =y . The cumulative estimator (10) can be di-
rectly used in (6) by setting ( )y y=M . The point to point 
estimator (IMG PP) is then simply given by: 
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As x and z are assumed to be independent, pY (y) can be 
computed as the convolution of pX (x) and pZ (z): 
 Y Xp p pZ= ∗ . 
In the general case the operations in (11) have to be per-
formed numerically. However, if the distribution pX (x) is 
Laplacian (GGD with 1γ = ), its Gaussian Transform is [2]: 
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and the cumulative estimator from (11) reduces to: 
 . (13) ( ) ( )(2 2

_ , 1 ln 1X PP y Pγ γσ σ= = − − M )y
Also, as γ  tends to 2, the Gaussian Transform of the GGD 
asymptotically tends to a Dirac function centred in 2

γσ  [2], 
and the estimator (11) tends to the classical Wiener filter (5). 
In order to asses the performances of the proposed estimator, 
we measure the distortion of the estimated data as the quad-
ratic error: 
 . ( ) ( )2ˆ ˆ,e x x x x= −
The global distortion induced by an estimator is therefore: 
 . (14) ( ) ( ) ( )ˆ, X ZD e x x p x p z dxd= ∫∫ z
We compare our estimator in terms of distortion (Fig. 2) with 
the estimators known as shrinkage functions from [1]. The 
idea of shrinking originates from [3], but [1] provides both 
improved results and statistical interpretation of the func-
tions. In fact, the shrinkage functions from [1] are the result 
of direct MAP, which in the case of GGD data and Gaussian 
noise yields x̂  as the solution of the equation in x: 
 ( )2

Z
1y x xγ γ

γσ σ γη γ−= − − . (15) 
Equation (15) has analytical solutions for 0.5γ =  (cubic 
equation), 1 or 2γ =  (linear equation) and 1.5γ =  (quad-
ratic equation). The resulting shrinkage functions have 
thresholding characteristics for 1γ ≤  and yield the Wiener 
filter for 2γ = . Graphic illustration of the shrinkage func-
tions and of the equivalent IMG PP functions obtained via 
(11) are presented in Fig. 1. 

 
Figure 1. Shrinkage functions and IMG PP estimation curves 

One can also compute the lower bound on the distortion in-
duced by an estimation procedure based on IMG, which is 
given by the distortion of the data when the samples are gen-
erated as a Gaussian mixture and their variances are known 
perfectly. The ensuing distortion lower bound is: 
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 is the theoretical distortion of the 

Wiener filter for Gaussian data and noise with known vari-
ances 2σ  and 2

Zσ . This result is superposed in Fig. 1, which 
displays the distortion of the estimation (14) as a function of 
the signal to noise ratio (SNR) 
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Figure 2. Distortion for GGD data as a function of SNR (dB) 

A considerable difference in performance in the favour of 
IMG PP is observed for 0.5γ = . The difference tends to 
decrease for larger γ , and inverts for 1.5γ = , albeit with a 
very small relative module. All curves tend to the distortion 
of the Wiener filter when γ  approaches 2, plotted dashed-
dotted in Fig.2 on the graph corresponding to 1.5γ = . 

5. LOCAL ESTIMATION 

The simplest way of obtaining the variances within a local 
estimation paradigm ( ) is through Maximum Likeli-
hood (ML) estimation: 

1m >

 , (17) (2
2 2
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σ
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which for zero-mean independent Gaussian source and noise 
data yields the solution: 
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(18) could be improved through MAP estimation, if the vari-
ance distribution were known. This is provided by the Gaus-
sian Transform and the MAP variance estimate is: 
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Generally the expression (19) requires numerical maximiza-
tion, but an analytical form exists for 1γ =  and Gaussian 
noise (using (12) and differentiation of (19)): 
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We tested empirically both (18) and (20) by generating 1D 
Laplacian data of length N=10e6, adding independent white 
Gaussian noise, and performing denoising according to (5), 
using local windows of length m=5. The corresponding dis-
tortion was computed as the mean square error (Fig. 3). We 
also tested the point to point estimators from Section IV.  

 
Figure 3. Empirical distortion 

As expected, empirical results reproduce the theoretical re-
sults for the scalar estimators from the previous section (Fig. 
3 zooms into the region [–5 5] dB), and while the ML estima-
tion performs worst than the shrinkage functions, the IMG 
MAP technique improves even on the IMG PP estimator. 

6. LOCAL-GLOBAL ESTIMATION 

It is possible to go one step further and combine the local 
estimation approach with the cumulative estimation scheme 
presented in Section 3. It is sufficient to define the function 
M as the MAP estimates (20): 
 , (21) ( ) 2

_ˆ [ ]MAP k X MAP kσ=yM

compute empirically the distribution probability 
MAP

PM  

(which is directly given by the histogram of 2
_ˆX MAPσ ), and 

perform cumulative estimation according to (10): 
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As the cumulative estimator is not sensitive to monotonic 
transformations (Theorem 1), in the case of Gaussian noise 
one can directly use as a norm the ML variance estimates 
(18), or simply the distribution of 2

ky . This assertion, how-
ever, is not true in the general case. 
We call this technique the local-global (LG) estimation, as it 
uses global information (empirical distribution of 2

_ˆX MAPσ ) to 
estimate the variance on a local level. The LG technique can 
be best described as local MAP estimation (choice of the M 
function ) under the constraint of global consistency (cumu-
lative estimation). 
For Laplacian data the LG estimates are given by (12): 
 . (23) ((2 2 2

_ˆ ˆ[ ] ln 1 [ ]
MAPX LG X MAPk Pγσ σ σ= − − M ))_ k

Distortion results are presented in Fig. 4 for the local ML, 

MAP and LG techniques. 

 
Figure 4. Distortion for local estimation techniques 

As expected, the LG estimation further improves on the pre-
vious ML and MAP based estimates. 

7. CONCLUSION 

We presented in this paper various denoising algorithms 
based on the Infinite Mixture of Gaussians model. Their ap-
plication to the denoising of Generalized Gaussian data 
showed significant improvements in terms of distortion, both 
theoretically and empirically, with respect to the state-of-the-
art. However the potential of IGM based denoising is not yet 
fully explored, as the lower bound presented in this paper is 
still below current results. The local estimation methods pro-
posed (MAP, LG) may reach this lower bound in the case 
where the data comes locally from the same Gaussian com-
ponent, which would allow for perfect variance estimation. If 
this is not the case, the local window size should be adapted 
in order to optimally exploit local Gaussianity. 
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