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Abstract

This paper formulates the problem of object categoriza-
tion in the discriminant analysis framework focusing on
transforming visual feature data so as to make it conform
to the compactness hypothesis in order to improve catego-
rization accuracy. The sought transformation, in turn, is
found as a solution to an optimization problem formulated
in terms of inter-observation distances only, using the tech-
nique of iterative majorization. The proposed approach is
suitable for both binary and multiple-class categorization
problems, and can be applied as a dimensionality reduction
technique. In the latter case, the number of discriminative
features is determined automatically since the process of
feature extraction is fully embedded in the optimization pro-
cedure. Performance tests validate our method on a number
of benchmark data sets from the UCI repository, while the
experimentsin the application of visual object and content-
based image categorization demonstrate very competitive
results, asserting the method’s capability of producing se-
mantically relevant matches that share the same or synony-
mousvocabulary with the query category and all owing mul-
tiple pertinent category assignment.

1. Introduction

Obiject categorization, as a fundamental computer vision
problem, has long been a major focus of ongoing research,
which lead to the development of a variety of methods and
techniques proposed to date, e.g., [14, 15, 30]. Many ap-
proaches have demonstrated impressive results in specific
aspects of the recognition, categorization and classifica-
tion tasks, such as feature design [27] and extraction [23],
known object detection [29], etc. However, there has been
a certain lack of attention to the development of general
methods that can achieve high recognition accuracy by ac-
tively transforming the data and reducing its dimensional-

ity to extract features in an optimal fashion, while taking
into account specific properties of the underlying classi-
fier. With the exception of several notable contributions,
e.g., [6, 13, 16, 33], many approaches essentially treat the
classifier as a black box completely isolated from the feature
extraction process, which ultimately leads to suboptimal re-
sults. There exist hundreds of dimensionality-reducing data
transformation methods originating from families as diverse
as discriminant analysis techniques (LDA, DF-LDA, GDA),
their advanced extensions (SHOSLIF, Fisherfaces), non-
linear mappings (MDS, SOM) and neural networks (Neu-
roScale), referencing all of which is simply impossible due
to their sheer number. Yet, the answers to important ques-
tions, such as “How many dimensions are enough to dis-
criminate among given classes?”, still remain vague.

In order to address these issues, we investigate the prob-
lem of object categorization in the discriminant analysis
framework and propose a method of finding a distance-
based discriminative transformation of the original visual
feature data. Based on the compactness hypothesis [1], the
sought transformation specifically aims at improving the ac-
curacy of the nearest neighbor (NN) classifier [11] and im-
plicitly integrates the feature extraction process in the prob-
lem formulation. Additional constraints are imposed to pre-
vent overfitting and thus improve generalization abilities of
the proposed method.

The remainder of this paper is structured as follows. In
section 2 we formulate the task of deriving a discriminant
transformation as a problem of minimizing an asymmetric
criterion based on the compactness hypothesis. In section
3 we review the iterative majorization method and demon-
strate how it can be used to minimize the chosen criterion.
Section 4 provides a complete algorithm that obtains the
sought transformation alongside with the extensions of the
proposed approach for dimensionality reduction and multi-
ple class discriminant analysis. We detail our experimental
results for both benchmark and real-world image data sets in
section 5 and discuss the proposed approach by highlighting
its essential differences from existing methods in section 6.



2. Problem formulation

Suppose that we seek to distinguish between two classes
represented by data sets X and Y having Nx and Ny m-
dimensional observations, respectively. For this purpose,
we are looking for such transformation matrix* 7' € Rmxm
such that {X — X' Y +— Y}, that places instances of a
given class near each other while relocating the instances
of the other class sufficiently far away. In other words, we
want to ensure that the compactness hypothesis holds for
either of the two classes in question, while its opposite is
true for both.

Now, we must reiterate that our primary goal is to im-
prove the NN performance on the task of discriminant anal-
ysis. This implies, first of all, that the sought problem for-
mulation must relate only to the factors that directly influ-
ence the decisions made by the NN classifier, namely - the
distances among observations. Secondly, in order to benefit
as much as possible from the non-parametric nature of the
NN, the sought formulation must not rely on the traditional
class separability and scatter measures that use class means,
weighted centroids or their variants (e.g., see [12]) which,
in general, connote quite strong distributional assumptions.
Finally, an asymmetric product form should be more prefer-
able, since the sum of distances is inadequate as a between-
class separability measure due to the fact that it can be made
arbitrarily large while at the same time having a significant
proportion of summand distances close to zero, while the
asymmetry may be justified as consistent with the proper-
ties of the data encountered in the target application area
of multimedia retrieval and categorization [35]. More for-
mally, these requirements can be accommodated by an op-
timization criterion expressed in terms of distances among
the observations from the two data sets as follows.

Let d}’J‘.’(T) denote a Euclidean distance between points
i and j within transformed data set X' given a transforma-
tion matrix 7', and, analogously, d {T) specify a distance
between the i-th point from data sét X' and the j-th point
from data set Y. Using this notation, the sought discrim-
inative data transformation can be obtained by minimizing
the following criterion:

Nx Nx(l\gx -1
IT¥ @ @)
J(T) = X : )
Nx Ny Nx Ny
B
[T
i=1j=1

where the numerator and denominator of (1) represent the
geometric means of corresponding distances, and ¥(-) de-

1At the moment, we consider 7" to be a square matrix. Section 4.2 on
dimensionality reduction will deal with T" of size m x k, where k < m.

notes a Huber robust estimation function [18]. The choice
of Huber function in (1) is motivated by its ability to switch
from quadratic to linear penalty allowing to mitigate the
consequences of an implicit unimodality assumption that
the formulation of the numerator of (1) leads to. Addition-
ally, Huber function has several attractive properties that
greatly facilitate the derivation of the majorizing inequali-
ties, as will be shown in section 3.2.
In the logarithmic form, criterion (1) is written as:
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The first and the second summation terms of (2) are go-
ing to be referred to as Sy (T") (“within” distances) and
Sp(T) (“between” distances) in the following discussion to
allow for a more convenient notation and due to their func-
tional similarity with the notions of within- and between-
class scatter measures used in a number of well-known dis-
criminant analysis techniques [9, 10, 13, 16]. We will also
shorten the notation by reassigning the normalizing quanti-
ties NX(A% and N N to e and S, respectively.

Although a straightforward differentiation of (2) might
be sufficient in order to proceed with a generic optimization
search technique such as gradient descent, our preliminary
experiments showed that computational costs of such an en-
deavor can very quickly become prohibitive, especially if
one adheres strictly to the main premise of this work, i.e.,
uses only pairwise distances among observations (quadratic
complexity), as opposed to deviations from class means
(linear complexity) of the customary class separability and
scatter measures abundant in clustering literature. The com-
putational cost situation will be further exacerbated if, in
addition to the descent direction, a proper step length must
be calculated, so that gradient descent does not overshoot
and actually manages to improve the optimization criterion,
while the latter outcome is guaranteed by the introduced be-
low iterative majorization technique (and, hence its alterna-
tive name: “guaranteed descent”). Furthermore, given the
formulation of (2), some of the tested state-of-the-art op-
timization routines (SQP, Quasi-Newton with line search)
happened not to be able to converge, even on fairly simple
data sets.

Therefore, before considering possible strategies for op-
timizing (2), it is beneficial to derive some useful approx-
imations of Sy (T") and Sp(T") that can make the task of
minimizing log J(T') criterion amenable to a simple itera-
tive procedure based on the majorization method, which we
discuss in the following section.

log J(T')
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3. Iterative majorization
3.1. General overview of the method

As stated in [5, 32, 17], the central idea of the majoriza-
tion method is to replace the task of optimizing a compli-
cated objective function f(x) by an iterative sequence of
simpler minimization problems in terms of the members of
the family of auxiliary functions u(z,z), where z and %
vary in the same domain Q. In order for u(x,Z) to qual-
ify as a majorizing function of f(x), the auxiliary function
w(z, T) is required to: (a) have a unique minimum, (b) al-
ways be greater than or equal to the original objective func-
tion, and (c) touch the surface of the original function at the
supporting point z.

Once an appropriate function u(x, Z) has been found, the
iterative majorization algorithm proceeds as follows. After
assigning an initial supporting point z, the successor point
x5 is found by minimizing u(z, Z). The obtained x; subse-
quently becomes the next supporting point, and the process
repeats until there is no improvement in the value of the ob-
jective function.

The essential property of the above procedure is that
it generates a non-increasing sequence of function values,
which converges to a stationary point whenever f(z) is
bounded from below and z is sufficiently restricted. In ad-
ditional to its computational advantages, the majorization
method has the valuable properties of low dependence on
the initial value [32] and enhanced robustness with respect
to local minima problems [20]. In the next section, we will
outline a way to derive majorizing expressions of (2) and
show how they can be used for optimizing the chosen crite-
rion.

3.2. Majorizing the optimization criterion

It can be verified that majorization remains valid under
additive decomposition [17]. Therefore, a possible strat-
egy for majorizing (2) is to deal with Sy (T") and —Sg(T)
separately and subsequently recombine their respective ma-
jorizing expressions.

We begin by noting that both logarithm and Huber dis-
tance are majorizable by linear and quadratic functions, re-
spectively [17, 21]. This fact makes it possible to derive a
majorizing function of Sy (T') as follows:
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= MSw (Ta T) ) (3)

where T, T € R™*™ T is asupporting point for T, w;; is a
weight of the Huber function majorizer, as defined in [17],
and K is a constant that collects all of the terms that are
irrelevant from the point of view of minimization with re-
spect to 7" (see [21] for detailed derivations). In the matrix
form, the above formulation can be expressed as:

psw (T,T) = %tr (T"TXTRXT) + K, (4)

where R is a square symmetric design matrix, as specified
in [21].

As for —Sg(T'), we start out by expressing its every term
using a second order Taylor series expansion of the loga-
rithm function around a supporting point 7'. In the result-
ing formulation, the sum of Euclidean distances can be ma-
jorized by a rule based on the Cauchy-Schwarz inequality
[5, 17] (again, see [21] for derivation details). In the matrix
form, the resulting majorizing function of —Sg(T") can be
expressed as:

1
p—sy (T, T) = 5tr(TTZTGZT)

—2tr(TTZTGZT) + K>, (5)

where Z is the matrix obtained by joining X and Y together,
row-wise, and G is a square symmetric design matrix of size
N = Nx + Ny, as defined in [21].

Finally, combining results (4) and (5), we obtain a ma-
jorizing function of the log J(T") optimization criterion:

og 1 (T, T) = apsy + Bp-sg
= Str (ITXTRXT)

+§tr(TTZTGZT)

—26tr(TTZTGZT) + K3, (6)

that can be used to find an optimal transformation 7' min-
imizing log J(T) criterion via the iterative procedure out-
lined in section 3.1. Similarly to the last terms in (4) and
(5), K3 is a constant that collects all of the other terms that
are irrelevant from the point of view of minimization with
respectto 7.

3.3. Minimization of the majorizer of log J(T')

It is possible to minimize (6) with respect to 7" in a
straightforward fashion by setting its derivative to zero and
solving the resulting system of linear equations. How-
ever, it is often recommended [2, 3, 22, 24] that a length-
constrained solution be found by deploying such techniques
as weight-limiting, weight decay, etc., especially in the case
of classifiers capable of achieving zero training error, to



prevent overfitting and thus improve generalization perfor-
mance of the classifier. By incorporating the constraint into
a Lagrangian, solving it and substituting the solution back
into the expression of the length constraint, we obtain the
following:
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where A is a Langrangian multiplier, & is the value of the
length constraint estimated from the validation data set, M
is defined as 2XTRX + ZTGZ, Lisequal to 2ZTGZT,
I is an identity matrix, and U, D are the respective ma-
trices of eigenvectors and eigenvalues of M?2. Clearly, (7)
is easily solved by any suitable root-finding technique, such
as Newton-Raphson method. Once the constraint-satisfying
value A has been found, the optimal transformation 7', i.e.
the successor point in the iterative majorization algorithm is
recovered as:
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4. Putting it all together
4.1. Complete algorithm

Considering all of the derivations we have desribed
so far, the complete distance-based discriminant analysis
(DDA) algorithm for iterative majorization of log J(T) cri-
terion (2) can be specified as follows:

1. Assign an initial supporting point T = T, € R™*™;
2. Find a successor point T’ using (8);
3. Iflog J(T) —log J(T}) < e, then stop;

4. SetT =Ty, goto 2.
4.2. Dimensionality reduction

As previously mentioned in section 2, the initial choice
of the size of the sought discriminative transformation was
to have T' € R™>*™. However, so far we have not encoun-
tered a single statement that requires 7" to be a square ma-
trix, which we can take advantage of by setting the column
size of T' equal to a certain & < m, rendering the presented
method a dimensionality reduction technique as well.

Furthermore, the exact value of k is readily available,
providing an answer to a critically important question as for

2Simplifying the notation of (7), the reciprocal and squaring operations
should be understood as applied to the diagonal matrix D on the element
by element basis taking into account the magnitudes of each eigenvalue so
as to avoid division by zero problems.

how many dimentions of data one needs to retain in order
to preserve the same discriminatory power as in the full-
dimensional case. Indeed, since the distances among ob-
servations are the same in both 777 and US?UT metrics
(where U and S come from the singular value decomposi-
tion of T: T = USV'T), the effect of applying T € R™*™
is fully captured by the left-singular vectors of 7" scaled by
non-zero singular values, whose number, in turn, gives the
exact value of k. Some examples, as well as a summary of
various properties that distinguish DDA from other dimen-
sionality reduction methods are given in section 6.

4.3. Multiple classdiscriminant analysis

Another possible modification is a multiple-class exten-
sion of the DDA technique, expressed by the following def-
inition of the optimization criterion:

K-1
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where K is the number of classes, K > 2. Note that (9)
becomes (2) for the two-class formulation, when K = 2.
Again, similarly to the latter case, the particular class to
be left out (since (9) considers only K — 1 terms) may be
determined using domain knowledge, or via statistical tech-
niques. In order to accommodate the changes required for
adopting (9), the individual matrices R and G from (4) and
(5) will be replaced with

K-1 Ot(z) ' K-1 )
Rk =) WR(’), and Gx =Y GY, (10)
i=1 =1

respectively, where each of the matrices R is computed
similarly to that of (4) using observations from class 4, while
matrices G(9) are calculated as used in (5) with proper index
interval adjustment for computing distances between data
points of a given class ¢ and the rest of the data set.

5. Experimental results
5.1. Benchmark data set performance

In our preliminary empirical analysis, the error rate re-
sults of classification performance (on both binary and
multiple-category data sets) of two types of experiments
were compared. For the first type of experiments, which
we will refer to as simply “NN” experiments, we measured
classification error rate of the NN classifier using 10-fold
cross-validation [34]. In the second type of experiments,
that are going to be called “DDA+NN” experiments, an ad-
ditional stage of applying a discriminating transformation



T derived with the proposed DDA method prior to measur-
ing the cross-validation performance of the NN classifier
was introduced. Therefore, the goal of this analysis was to
assess the effect of applying a DDA transformation on the
accuracy of the NN classifier.

Several well-known data sets from the UCI Machine
Learning Repository [4] were used in our experiments. The
error rates of NN and DDA+NN data classification exper-
iments averaged over twenty trial cross-validation runs are
presented in Table 1, showing an improvement in perfor-
mance and comparing favorably with the best results on
these data sets published to date [19].

Table 1. Classification results for UCI| data

Data set Classes | % Err. NN | % Err. DDA+NN
Hepatitis 2 29.57 0.00
lonosphere 2 13.56 7.73
Diabetes 2 30.39 27.11
Heart 2 40.74 21.11
Monk’s P1 2 14.58 0.69
Balance 3 21.45 3.06
Iris 3 4.00 3.33
DNA 3 23.86 6.07
Vehicle 4 35.58 24.70

5.2. Application to visual object categorization

For our object categorization experiments we chose a
recently developed database ETH80 composed of entities
corresponding to the basic level of human knowledge orga-
nization [25]. The database contains high-resolution color
images of 80 objects from 8 different classes, for a total
of 3280 images. The visual information for each image
was represented by 286-dimensional feature vector contain-
ing 166 global color histogram and 120 Gabor filter texture
descriptors extracted by the Viper system [31]. The train-
ing set comprised images taken one per class object viewed
from a fixed position, while the rest was allocated to the test
set. Again, similarly to the setup described above (see sec-
tion 5.1), we compared performance results for “NN”and
“DDA+NN” experiments for each of the 8 classes, but
this time, using a one-against-all classification configura-
tion typically encountered in ensemble learning [8], and
setting target dimensionality to 2D. The results are summa-
rized in Table 2.

It is importnant to emphasize here that image representa-
tion for these experiments was reduced via DDA to two di-
mensions only. Nevertheless, as shown in the last column of
Table 2, the proposed technique still was able to descrease
categorization error rate, which improved the overall per-
formance average. The results in Table 2 also reveal the
importance of the length constraint for the purpose of avoid-

Table 2. Object categorization results for the
ETHB80 image database

% Error rate

Object class NN DDA+NN DDA+NN

(unconstrained) | (constrained)
(1) Apple 4.47 18.66 0.75
(2) Car 14.47 18.72 5.78
(3) Cow 12.12 16.91 10.97
(4) Cup 3.09 16.94 2.22
(5) Dog 14.00 16.66 12.72
(6) Horse 14.47 14.84 13.16
(7) Pear 6.13 18.94 3.84
(8) Tomato 2.50 16.87 1.88

ing data over-fitting problems. Both unconstrained and con-
strained solutions found by the DDA procedure lead to zero
error rate on the training data, but, as can be easily seen
from Table 2, their performance turned out to be drastically
different on the test data sets, demonstrating an adequate
generalization capability induced by the length-constrained
version of the proposed method. An example of the 2D rep-
resentation of the training set for image class 2 obtained by
DDA is shown in Figure 1. As can be easily seen from the

Class (2) "car"

Figure 1. Result of applying a dimensionality-
reducing DDA transformation to the training
set for class (2). Images from class 2 are pro-
jected close to each other while images be-
longing to the other classes are freely scat-
tered maintaining a certain distance margin
from class 2

figure, the target class images are well separated from those
of all of the other classes, which is exactly the requirement
one seeks to satisfy in one-against-all classification.

In addition to the tests mentioned above, we also ex-
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Figure 2. Categorization of previously unseen images. The annotation keywords overlapping with
the query category vocabulary are listed in bold font.

plored empirically the influence of the DDA transformation
on the performance of other classification methods (includ-
ing NN as a baseline) on the real-world image categoriza-
tion. For these experiments, three (potentially overlapping)
image sets were selected from the Washington University
annotated image collection [26], based on the presence of
keywords “trees”, “cars” and “ocean” in their annotation.
Every classifier was then tested by 10-fold cross-validation
on the task of categorization of test images as belonging to a
given class, e.g., “trees”, based on their 286-dimensional vi-
sual feature vector representation (see above). The remark-
able results of these experiments demonstrate that applying
the DDA transformation not only consistenly improves NN
classifier accuracy (as expected), but also provides a boost
in performance to some more advanced non-linear classifi-
cation methods, such as SVM [7], as shown in Table 3.

Table 3. Image categorization results

Classifier % Error on image data set
Trees | Ocean Cars
Fisher’s LDA 43.89 | 4556 | 17.72
SVM (linear) 3111 | 2111 1.58
DDA+SVM (linear) 17.78 | 11.11 1.40
SVM (gaussian) 23.89 | 16.67 1.58
DDA+SVM (gaussian) | 17.78 | 11.11 1.40
NN 38.33 | 19.44 2.46
DDA+NN 18.89 | 18.33 1.23

In order to verify that non-trivial collection-independent
learning has occurred, we also examined the categorization
performance of the derived above category-specific DDA
transformations on a completely separate image set taken
from the COREL database. The empirical evidence demon-
strates that the application of the DDA transformation leads

to robust categorization of unseen images producing seman-
tically relevant matches that may (Figure 2, row one) or may
not (Figure 2, row two) share the same vocabulary with the
query category, as well as allowing images to be assigned to
multiple relevant categories (Figure 2, the last two images
in both rows).

6. Discussion and related work

In this section we briefly review some of the previously
developed approaches of discriminant analysis and dimen-
sionality reduction, demonstrating on simple examples the
essential differences between existing techniques and the
proposed DDA method.

First, we consider principal component analysis (PCA),
a fundamental tool for dimensionality reduction that finds a
set of orthogonal vectors that account for as much as possi-
ble of the data’s variance. Apparently, PCA method disre-
gards class membership information altogether and conse-
quently is of limited use as a discriminatory transform.This
conjecture is easily confirmed by comparing 2D projections
of the Hepatitis data set by the PCA and DDA methods il-
lustrated in Figure 3, which shows a perfect class separation
for the latter approach explaining its 100% classification
accuracy reported earlier. The singular value decomposi-
tion of the resulting transformation reveals that there is only
one significantly different from zero singular value, mean-
ing that in order to distinguish between the two classes one
may use just one dimension, i.e., project the data set onto a
line, as seen in Figure 3(b).

Fisher’s linear discriminant analysis (LDA) [9, 10, 12]
projects original data into a smaller number of dimensions,
while trying to preserve as much disriminatory informa-
tion as possible by maximizing the ratio of between-class
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(a) PCA projection (b) DDA projection

Figure 3. 2D projections of the Hepatitis data

scatter over within-class scatter. Based on the second or-
der statistical information, the method is proven to be op-
timal whenever data classes are represented by unimodal
Gaussians with well-separated means. A violation of this
assumption drastically deteriorates LDA’s performance, as
seen in Figure 4(a) that compares discriminative projections
found by LDA and DDA methods for the classical XOR
problem [9]. As for the DDA approach, Figure 4(a) il-
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(a) XOR problem solved by
the LDA and DDA

(b) “Dominant variance di-
rection” problem solved by
the BDA and DDA

Figure 4. Comparison of LDA, BDA and DDA

lustrates that the proposed technique does not require data
Gaussianity assumptions. Furthermore, the method can de-
termine discriminative projection transformations of up to
as many dimensions as there are in the data (even though
it is hardly ever necessary to retain more than &, see sec-
tion 4.2), whereas LDA is limited by rank restrictions on the
between-class scatter matrices to have no more than K — 1
dimensions, where K is the number of classes.

A biased discriminant analysis (BDA) approach [35] de-
veloped with a goal in mind to improve efficiency of in-
teractive multimedia retrieval applications, is, similarly to
the DDA, based on an appealing idea of asymmetric treat-
ment of positive and negative relevance feedback exam-
ples. This technique excels in overcoming several impor-

tant drawbacks of parametric approaches, such as LDA and
MDA [9], induced by scatter matrix rank restrictions and
Gaussianity assumptions and, conceptually, is closest to the
two-class version of the proposed DDA method. However
BDA''s performance is offset by suboptimal solutions when-
ever the observations from the two classes overlap consider-
ably along the direction orthogonal to that of minimal vari-
ance of the positive examples (see Figure 4(b)).

There also exist other DA methods that are specifically
designed to work well for non-Gaussian data sets (e.g.,
NDA [13]) and target the nearest neighbor classifier per-
formance (e.g., a recent enhancement of NDA proposed
in [6]), whose main difference from DDA lies in the fact
that these methods still rely on parametric within-class scat-
ter matrices. Among the iterative techniques, there is dis-
criminant adaptive nearest neighbor (DANN) approach [16]
that relies on a probabilistic formulation to achieve similar
goals, and the class-dependent weighted (CDW) dissimilar-
ity method [28] that can effectively be considered operating
in a restricted case of the DDA setting where no feature ex-
traction is possible as the sought transformation is required
to be a diagonal matrix.

7. Conclusion

We have described a visual object categorization method
formulated in the discriminant analysis framework. The
main focus of the proposed approach is on finding a trans-
formation of the original data that enhances the degree of
conformance to the compactness hypothesis and its inverse,
which has been shown to lead to an improved categorization
accuracy.

The presented method can be used as a dimensionality
reduction technique with an advantageous ability to deter-
mine automatically the number of necessary discriminative
features, is suitable for both binary and multiple-class cat-
egorization problems, and preserves non-parametric prop-
erties of the underlying classifier by depending exclusively
on the inter-observation distances (hence, the name of the
approach).

The performance of the proposed method has been ver-
ified on a number of the benchmark data sets, and tested
on the visual object categorization tasks. The encouraging
results not only demonstrated DDA’s superiority compared
to a number of baseline techniques, but also revealed that
the method improves the results achieved by some more ad-
vanced non-linear classification methods, such as SVM.
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